Merge branch 'no-2prism-hex' into development

This commit is contained in:
Sheng Zhang 2021-12-06 16:45:01 +01:00
commit a4cd663fc0
6 changed files with 88 additions and 112 deletions

@ -1 +1 @@
Subproject commit 02609955e53c0a5fb6cee5753419fb1ba1b9da2a Subproject commit e6e1f93a36d63348359a81d7c373083a39977694

View File

@ -6,11 +6,11 @@ references:
output: [xi_sl, xi_tw] output: [xi_sl, xi_tw]
N_sl: [3, 3, 0, 6, 0, 6] # basal, prism, -, 1. pyr<a>, -, 2. pyr<c+a> N_sl: [3, 3, 6, 0, 6] # basal, prism, -, 1. pyr<a>, -, 2. pyr<c+a>
N_tw: [6, 0, 6] # tension, -, compression N_tw: [6, 0, 6] # tension, -, compression
xi_0_sl: [10.e+6, 55.e+6, 0., 60.e+6, 0., 60.e+6] xi_0_sl: [10.e+6, 55.e+6, 60.e+6, 0., 60.e+6]
xi_inf_sl: [40.e+6, 135.e+6, 0., 150.e+6, 0., 150.e+6] xi_inf_sl: [40.e+6, 135.e+6, 150.e+6, 0., 150.e+6]
xi_0_tw: [40.e+6, 0., 60.e+6] xi_0_tw: [40.e+6, 0., 60.e+6]
a_sl: 2.25 a_sl: 2.25
@ -23,16 +23,12 @@ f_sat_sl-tw: 10.0
h_0_sl-sl: 500.0e+6 h_0_sl-sl: 500.0e+6
h_0_tw-tw: 50.0e+6 h_0_tw-tw: 50.0e+6
h_0_tw-sl: 150.0e+6 h_0_tw-sl: 150.0e+6
h_sl-sl: [+1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, h_sl-sl: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, +1.0, 1.0] # unused entries are indicated by -1.0
+1.0, 1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0,
+1.0, 1.0] # unused entries are indicated by -1.0
h_tw-tw: [+1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, h_tw-tw: [+1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0,
-1.0, 1.0] # unused entries are indicated by -1.0 -1.0, 1.0] # unused entries are indicated by -1.0
h_tw-sl: [+1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, h_tw-sl: [1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0,
-1.0, -1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, +1.0, -1.0, 1.0, -1.0] # unused entries are indicated by -1.0
+1.0, -1.0, 1.0, -1.0] # unused entries are indicated by -1.0 h_sl-tw: [1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0,
h_sl-tw: [+1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, +1.0, -1.0, 1.0] # unused entries are indicated by -1.0
-1.0, -1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
+1.0, -1.0, 1.0] # unused entries are indicated by -1.0

View File

@ -8,18 +8,17 @@ references:
https://doi.org/10.1016/j.actamat.2017.05.015 https://doi.org/10.1016/j.actamat.2017.05.015
output: [gamma_sl] output: [gamma_sl]
N_sl: [3, 3, 0, 0, 12] # basal, 1. prism, -, -, 1. pyr<c+a> N_sl: [3, 3, 0, 12] # basal, 1. prism, -, 1. pyr<c+a>
n_sl: 20 n_sl: 20
a_sl: 2.0 a_sl: 2.0
dot_gamma_0_sl: 0.001 dot_gamma_0_sl: 0.001
h_0_sl-sl: 200.e+6 h_0_sl-sl: 200.e+6
# C. Zambaldi et al.: # C. Zambaldi et al.:
xi_0_sl: [349.e+6, 150.e+6, 0.0, 0.0, 1107.e+6] xi_0_sl: [349.e+6, 150.e+6, 0.0, 1107.e+6]
xi_inf_sl: [568.e+6, 150.e+7, 0.0, 0.0, 3420.e+6] xi_inf_sl: [568.e+6, 150.e+7, 0.0, 3420.e+6]
# L. Wang et al. : # L. Wang et al. :
# xi_0_sl: [127.e+6, 96.e+6, 0.0, 0.0, 240.e+6] # xi_0_sl: [127.e+6, 96.e+6, 0.0, 240.e+6]
h_sl-sl: [+1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, h_sl-sl: [+1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, +1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0] # unused entries are indicated by -1.0
+1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0] # unused entries are indicated by -1.0

View File

@ -485,10 +485,6 @@ class Crystal():
[+2,-1,-1,+0, +0,+1,-1,+0], [+2,-1,-1,+0, +0,+1,-1,+0],
[-1,+2,-1,+0, -1,+0,+1,+0], [-1,+2,-1,+0, -1,+0,+1,+0],
[-1,-1,+2,+0, +1,-1,+0,+0]]), [-1,-1,+2,+0, +1,-1,+0,+0]]),
np.array([
[-1,+1,+0,+0, +1,+1,-2,+0],
[+0,-1,+1,+0, -2,+1,+1,+0],
[+1,+0,-1,+0, +1,-2,+1,+0]]),
np.array([ np.array([
[-1,+2,-1,+0, +1,+0,-1,+1], [-1,+2,-1,+0, +1,+0,-1,+1],
[-2,+1,+1,+0, +0,+1,-1,+1], [-2,+1,+1,+0, +0,+1,-1,+1],

View File

@ -5,9 +5,6 @@
0.0 1.0 -5.914589856893347e-17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -5.914589856893347e-17 0.0 0.0 0.0 0.0 0.0 0.0
0.4330127018922192 0.24999999999999975 -3.102315069664884e-17 -0.7500000000000002 -0.4330127018922192 5.373367321746164e-17 0.0 0.0 0.0 0.4330127018922192 0.24999999999999975 -3.102315069664884e-17 -0.7500000000000002 -0.4330127018922192 5.373367321746164e-17 0.0 0.0 0.0
-0.43301270189221935 0.25000000000000006 1.4502014121821253e-18 -0.7499999999999998 0.4330127018922193 2.5118225271075755e-18 0.0 0.0 0.0 -0.43301270189221935 0.25000000000000006 1.4502014121821253e-18 -0.7499999999999998 0.4330127018922193 2.5118225271075755e-18 0.0 0.0 0.0
-0.4330127018922194 -0.7499999999999999 6.059609998111558e-17 0.2500000000000001 0.4330127018922194 -3.498517463593857e-17 0.0 0.0 0.0
2.563950248511418e-16 -5.693113199781536e-32 -9.614043519462407e-33 1.0 -2.220446049250313e-16 -3.7496997163046135e-17 0.0 0.0 0.0
0.4330127018922194 -0.75 2.8122747872284606e-17 0.25000000000000006 -0.43301270189221935 1.6236676054415494e-17 0.0 0.0 0.0
-0.38254602783800284 -0.22086305214969287 -0.23426064283290896 0.6625891564490795 0.38254602783800284 0.40575133560034454 0.0 0.0 0.0 -0.38254602783800284 -0.22086305214969287 -0.23426064283290896 0.6625891564490795 0.38254602783800284 0.40575133560034454 0.0 0.0 0.0
0.0 -0.8834522085987724 -0.4685212856658182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.8834522085987724 -0.4685212856658182 0.0 0.0 0.0 0.0 0.0 0.0
0.38254602783800307 -0.22086305214969315 -0.23426064283290912 0.6625891564490792 -0.38254602783800296 -0.40575133560034443 0.0 0.0 0.0 0.38254602783800307 -0.22086305214969315 -0.23426064283290912 0.6625891564490792 -0.38254602783800296 -0.40575133560034443 0.0 0.0 0.0

View File

@ -200,7 +200,7 @@ module lattice
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! hexagonal (hP) ! hexagonal (hP)
integer, dimension(*), parameter :: & integer, dimension(*), parameter :: &
HEX_NSLIPSYSTEM = [3, 3, 3, 6, 12, 6] !< # of slip systems per family for hex HEX_NSLIPSYSTEM = [3, 3, 6, 12, 6] !< # of slip systems per family for hex
integer, dimension(*), parameter :: & integer, dimension(*), parameter :: &
HEX_NTWINSYSTEM = [6, 6, 6, 6] !< # of slip systems per family for hex HEX_NTWINSYSTEM = [6, 6, 6, 6] !< # of slip systems per family for hex
@ -219,10 +219,6 @@ module lattice
2, -1, -1, 0, 0, 1, -1, 0, & 2, -1, -1, 0, 0, 1, -1, 0, &
-1, 2, -1, 0, -1, 0, 1, 0, & -1, 2, -1, 0, -1, 0, 1, 0, &
-1, -1, 2, 0, 1, -1, 0, 0, & -1, -1, 2, 0, 1, -1, 0, 0, &
! <-11.0>{11.0}/2. order prismatic compound systems (plane normal independent of c/a-ratio)
-1, 1, 0, 0, 1, 1, -2, 0, &
0, -1, 1, 0, -2, 1, 1, 0, &
1, 0, -1, 0, 1, -2, 1, 0, &
! <-1-1.0>{-11.1}/1. order pyramidal <a> systems (direction independent of c/a-ratio) ! <-1-1.0>{-11.1}/1. order pyramidal <a> systems (direction independent of c/a-ratio)
-1, 2, -1, 0, 1, 0, -1, 1, & -1, 2, -1, 0, 1, 0, -1, 1, &
-2, 1, 1, 0, 0, 1, -1, 1, & -2, 1, 1, 0, 0, 1, -1, 1, &
@ -753,45 +749,41 @@ function lattice_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(
integer, dimension(HEX_NSLIP,HEX_NSLIP), parameter :: & integer, dimension(HEX_NSLIP,HEX_NSLIP), parameter :: &
HEX_INTERACTIONSLIPSLIP = reshape( [& HEX_INTERACTIONSLIPSLIP = reshape( [&
! basal prism 2. prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a> ! basal prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a>
1, 2, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! -----> acting (forest) 1, 2, 2, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13,13,13,13,13,13,13, 21,21,21,21,21,21, & ! -----> acting (forest)
2, 1, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! | basal 2, 1, 2, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13,13,13,13,13,13,13, 21,21,21,21,21,21, & ! | basal
2, 2, 1, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! | 2, 2, 1, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13,13,13,13,13,13,13, 21,21,21,21,21,21, & ! |
! v ! v
6, 6, 6, 4, 5, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, & ! reacting (primary) 6, 6, 6, 4, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14,14,14,14,14,14,14, 22,22,22,22,22,22, & ! reacting (primary)
6, 6, 6, 5, 4, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, & ! prism 6, 6, 6, 5, 4, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14,14,14,14,14,14,14, 22,22,22,22,22,22, & ! prism
6, 6, 6, 5, 5, 4, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, & 6, 6, 6, 5, 5, 4, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14,14,14,14,14,14,14, 22,22,22,22,22,22, &
12,12,12, 11,11,11, 9,10,10, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, & 12,12,12, 11,11,11, 9,10,10,10,10,10, 15,15,15,15,15,15,15,15,15,15,15,15, 23,23,23,23,23,23, &
12,12,12, 11,11,11, 10, 9,10, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, & ! 2. prism 12,12,12, 11,11,11, 10, 9,10,10,10,10, 15,15,15,15,15,15,15,15,15,15,15,15, 23,23,23,23,23,23, &
12,12,12, 11,11,11, 10,10, 9, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, & 12,12,12, 11,11,11, 10,10, 9,10,10,10, 15,15,15,15,15,15,15,15,15,15,15,15, 23,23,23,23,23,23, &
12,12,12, 11,11,11, 10,10,10, 9,10,10, 15,15,15,15,15,15,15,15,15,15,15,15, 23,23,23,23,23,23, & ! 1. pyr<a>
12,12,12, 11,11,11, 10,10,10,10, 9,10, 15,15,15,15,15,15,15,15,15,15,15,15, 23,23,23,23,23,23, &
12,12,12, 11,11,11, 10,10,10,10,10, 9, 15,15,15,15,15,15,15,15,15,15,15,15, 23,23,23,23,23,23, &
20,20,20, 19,19,19, 18,18,18, 16,17,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, & 20,20,20, 19,19,19, 18,18,18,18,18,18, 16,17,17,17,17,17,17,17,17,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18, 17,16,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, & 20,20,20, 19,19,19, 18,18,18,18,18,18, 17,16,17,17,17,17,17,17,17,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18, 17,17,16,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, & 20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,16,17,17,17,17,17,17,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,16,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, & ! 1. pyr<a> 20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,16,17,17,17,17,17,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,16,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, & 20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,16,17,17,17,17,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,17,16, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, & 20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,16,17,17,17,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,17,16,17,17,17,17,17, 24,24,24,24,24,24, & ! 1. pyr<c+a>
20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,17,17,16,17,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,17,17,17,16,17,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,17,17,17,17,16,17,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,17,17,17,17,17,16,17, 24,24,24,24,24,24, &
20,20,20, 19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,17,17,17,17,17,17,16, 24,24,24,24,24,24, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 25,26,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, & 30,30,30, 29,29,29, 28,28,28,28,28,28, 27,27,27,27,27,27,27,27,27,27,27,27, 25,26,26,26,26,26, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,25,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, & 30,30,30, 29,29,29, 28,28,28,28,28,28, 27,27,27,27,27,27,27,27,27,27,27,27, 26,25,26,26,26,26, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,25,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, & 30,30,30, 29,29,29, 28,28,28,28,28,28, 27,27,27,27,27,27,27,27,27,27,27,27, 26,26,25,26,26,26, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,25,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, & 30,30,30, 29,29,29, 28,28,28,28,28,28, 27,27,27,27,27,27,27,27,27,27,27,27, 26,26,26,25,26,26, & ! 2. pyr<c+a>
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,25,26,26,26,26,26,26,26, 35,35,35,35,35,35, & 30,30,30, 29,29,29, 28,28,28,28,28,28, 27,27,27,27,27,27,27,27,27,27,27,27, 26,26,26,26,25,26, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,25,26,26,26,26,26,26, 35,35,35,35,35,35, & 30,30,30, 29,29,29, 28,28,28,28,28,28, 27,27,27,27,27,27,27,27,27,27,27,27, 26,26,26,26,26,25 &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,25,26,26,26,26,26, 35,35,35,35,35,35, & ! 1. pyr<c+a>
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,25,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,25,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,25,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,25,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,26,25, 35,35,35,35,35,35, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 36,37,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,36,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,36,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,36,37,37, & ! 2. pyr<c+a>
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,36,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,37,36 &
],shape(HEX_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for hex (onion peel naming scheme) ],shape(HEX_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for hex (onion peel naming scheme)
integer, dimension(BCT_NSLIP,BCT_NSLIP), parameter :: & integer, dimension(BCT_NSLIP,BCT_NSLIP), parameter :: &
@ -1137,35 +1129,31 @@ function lattice_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) r
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, & 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, & ! 2.prism 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, & ! 1. pyr<a>
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, & 9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & 13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & 13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & 13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & ! 1. pyr<a> 13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & ! 1. pyr<c+a>
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & 13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & 13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & ! 2. pyr<c+a>
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & 17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20 &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & ! 1. pyr<c+a>
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, & ! 2. pyr<c+a>
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24 &
],shape(HEX_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for hex ],shape(HEX_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for hex
select case(lattice) select case(lattice)
@ -1267,34 +1255,34 @@ function lattice_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) r
integer, dimension(HEX_NSLIP,HEX_NTWIN), parameter :: & integer, dimension(HEX_NSLIP,HEX_NTWIN), parameter :: &
HEX_INTERACTIONTWINSLIP = reshape( [& HEX_INTERACTIONTWINSLIP = reshape( [&
! basal prism 2. prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a> ! basal prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a>
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! ----> slip (acting) 1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! ----> slip (acting)
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! | 1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! | 1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! v <-10.1>{10.2} 1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! v <-10.1>{10.2}
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! twin (reacting) 1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! twin (reacting)
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & 1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, & 2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, & 2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, & 2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, & ! <11.6>{-1-1.1} 2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, & ! <11.6>{-1-1.1}
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, & 2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, & 2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, & 3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, & 3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, & 3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, & ! <10.-2>{10.1} 3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, & ! <10.-2>{10.1}
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, & 3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, & 3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, & ! <11.-3>{11.2} 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, & ! <11.-3>{11.2}
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24 & 4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20 &
],shape(HEX_INTERACTIONTWINSLIP)) !< Twin-slip interaction types for hex ],shape(HEX_INTERACTIONTWINSLIP)) !< Twin-slip interaction types for hex
select case(lattice) select case(lattice)