for array comparison, only values are taken into consideration that are non zero in array 1 AND array 2
This commit is contained in:
parent
5a723f3f49
commit
a40b73dc72
|
@ -165,8 +165,9 @@ class Test():
|
||||||
file.close()
|
file.close()
|
||||||
|
|
||||||
def compare_Array(self,File1,File2):
|
def compare_Array(self,File1,File2):
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
|
print 'comparing\n ' , File1,'\n ', File2
|
||||||
refFile = open(File1)
|
refFile = open(File1)
|
||||||
table = damask.ASCIItable(refFile)
|
table = damask.ASCIItable(refFile)
|
||||||
table.head_read()
|
table.head_read()
|
||||||
|
@ -174,8 +175,13 @@ class Test():
|
||||||
refArray = numpy.nan_to_num(numpy.genfromtxt(File1,missing_values='n/a',skip_header = len(table.info)+1,autostrip=True))
|
refArray = numpy.nan_to_num(numpy.genfromtxt(File1,missing_values='n/a',skip_header = len(table.info)+1,autostrip=True))
|
||||||
curArray = numpy.nan_to_num(numpy.genfromtxt(File2,missing_values='n/a',skip_header = len(table.info)+1,autostrip=True))
|
curArray = numpy.nan_to_num(numpy.genfromtxt(File2,missing_values='n/a',skip_header = len(table.info)+1,autostrip=True))
|
||||||
if len(curArray) == len(refArray):
|
if len(curArray) == len(refArray):
|
||||||
max_err=numpy.max(abs(refArray[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
refArrayNonZero = refArray[refArray.nonzero()]
|
||||||
print ' ********\n * maximum relative error',max_err,'\n ********'
|
curArray = curArray[refArray.nonzero()]
|
||||||
|
max_err=numpy.max(abs(refArrayNonZero[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
||||||
|
max_loc=numpy.argmax(abs(refArrayNonZero[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
||||||
|
refArrayNonZero = refArrayNonZero[curArray.nonzero()]
|
||||||
|
curArray = curArray[curArray.nonzero()]
|
||||||
|
print ' ********\n * maximum relative error ',max_err,' for ', refArrayNonZero[max_loc],' and ',curArray[max_loc],'\n ********'
|
||||||
return max_err
|
return max_err
|
||||||
else:
|
else:
|
||||||
print ' ********\n * mismatch in array size to compare \n ********'
|
print ' ********\n * mismatch in array size to compare \n ********'
|
||||||
|
@ -187,7 +193,73 @@ class Test():
|
||||||
refName = self.fileInReference(ref)
|
refName = self.fileInReference(ref)
|
||||||
curName = self.fileInCurrent(cur)
|
curName = self.fileInCurrent(cur)
|
||||||
return self.compare_Array(refName,curName)
|
return self.compare_Array(refName,curName)
|
||||||
|
|
||||||
|
def compare_TableRefCur(self,headings,ref,cur=''):
|
||||||
|
|
||||||
|
if cur =='': cur = ref
|
||||||
|
if len(headings) == 1 or type(headings) == dict: headings += headings
|
||||||
|
if len(headings) != 2 : print 'headings should be array of length 1 or 2 containing dictionaries or a dictionary'
|
||||||
|
if len(headings[0]) != len(headings[1]): print 'mismatch in headings to compare'
|
||||||
|
|
||||||
|
refName = self.fileInReference(ref)
|
||||||
|
curName = self.fileInCurrent(cur)
|
||||||
|
return self.compare_Table(headings,refName,curName)
|
||||||
|
|
||||||
|
def compare_Table(self,headings,File1,File2):
|
||||||
|
|
||||||
|
print 'comparing ASCII Tables\n' , File1,'\n', File2
|
||||||
|
table1 = damask.ASCIItable(open(File1))
|
||||||
|
table1.head_read()
|
||||||
|
table2 = damask.ASCIItable(open(File2))
|
||||||
|
table2.head_read()
|
||||||
|
datainfo = { # list of requested labels per datatype
|
||||||
|
'scalar': {'len':1,
|
||||||
|
'label1':[],
|
||||||
|
'label2':[]},
|
||||||
|
'vector': {'len':3,
|
||||||
|
'label1':[],
|
||||||
|
'label2':[]},
|
||||||
|
'tensor': {'len':9,
|
||||||
|
'label1':[],
|
||||||
|
'label2':[]},
|
||||||
|
}
|
||||||
|
|
||||||
|
for label in headings[0]:
|
||||||
|
datainfo[headings[0][label]]['label1'] += [label]
|
||||||
|
for label in headings[1]:
|
||||||
|
datainfo[headings[1][label]]['label2'] += [label]
|
||||||
|
|
||||||
|
active = [{},{}]
|
||||||
|
column = [{},{}]
|
||||||
|
|
||||||
|
for datatype,info in datainfo.items():
|
||||||
|
for label in info['label1']:
|
||||||
|
key = {True :'1_%s',
|
||||||
|
False:'%s' }[info['len']>1]%label
|
||||||
|
if key not in table1.labels:
|
||||||
|
sys.stderr.write('column %s not found in 1. table...\n'%key)
|
||||||
|
else:
|
||||||
|
if datatype not in active[0]: active[0][datatype] = []
|
||||||
|
if datatype not in column[0]: column[0][datatype] = {}
|
||||||
|
active[0][datatype].append(label)
|
||||||
|
column[0][datatype][label] = table1.labels.index(key) # remember columns of requested data
|
||||||
|
for label in info['label2']:
|
||||||
|
key = {True :'1_%s',
|
||||||
|
False:'%s' }[info['len']>1]%label
|
||||||
|
if key not in table2.labels:
|
||||||
|
sys.stderr.write('column %s not found in 2. table...\n'%key)
|
||||||
|
else:
|
||||||
|
if datatype not in active[1]: active[1][datatype] = []
|
||||||
|
if datatype not in column[1]: column[1][datatype] = {}
|
||||||
|
active[1][datatype].append(label)
|
||||||
|
column[1][datatype][label] = table2.labels.index(key) # remember columns of requested data
|
||||||
|
|
||||||
|
while table1.data_read(): # read next data line of ASCII table
|
||||||
|
for datatype,labels in active[0].items(): # loop over vector,tensor
|
||||||
|
for label in labels: # loop over all requested norms
|
||||||
|
data1[label] += numpy.array(map(float,table1.data[column[0][datatype][label]:
|
||||||
|
column[0][datatype][label]+datainfo[datatype]['len']]),'d').reshape(3,3)
|
||||||
|
print myData
|
||||||
def report_Success(self,culprit):
|
def report_Success(self,culprit):
|
||||||
|
|
||||||
if culprit < 0:
|
if culprit < 0:
|
||||||
|
|
Loading…
Reference in New Issue