diff --git a/PRIVATE b/PRIVATE index 232a094c7..3c52c31ca 160000 --- a/PRIVATE +++ b/PRIVATE @@ -1 +1 @@ -Subproject commit 232a094c715bcbbd1c6652c4dc4a4a50d402b82f +Subproject commit 3c52c31ca3272e0afe7967d2e59e0819f92e85c9 diff --git a/python/damask/_Lambert.py b/python/damask/_Lambert.py index a823764e9..8a0f043f3 100644 --- a/python/damask/_Lambert.py +++ b/python/damask/_Lambert.py @@ -32,9 +32,9 @@ import numpy as np -sc = np.pi**(1./6.)/6.**(1./6.) -beta = np.pi**(5./6.)/6.**(1./6.)/2. -R1 = (3.*np.pi/4.)**(1./3.) +_sc = np.pi**(1./6.)/6.**(1./6.) +_beta = np.pi**(5./6.)/6.**(1./6.)/2. +_R1 = (3.*np.pi/4.)**(1./3.) def cube_to_ball(cube): """ @@ -59,7 +59,7 @@ def cube_to_ball(cube): else: # get pyramide and scale by grid parameter ratio p = _get_order(cube_) - XYZ = cube_[p[0]] * sc + XYZ = cube_[p[0]] * _sc # intercept all the points along the z-axis if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16): @@ -69,7 +69,7 @@ def cube_to_ball(cube): q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]] c = np.cos(q) s = np.sin(q) - q = R1*2.0**0.25/beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c) + q = _R1*2.0**0.25/_beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c) T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q # transform to sphere grid (inverse Lambert) @@ -101,7 +101,7 @@ def ball_to_cube(ball): https://doi.org/10.1088/0965-0393/22/7/075013 """ - ball_ = ball/np.linalg.norm(ball)*R1 if np.isclose(np.linalg.norm(ball),R1,atol=1e-6) else ball + ball_ = ball/np.linalg.norm(ball)*_R1 if np.isclose(np.linalg.norm(ball),_R1,atol=1e-6) else ball rs = np.linalg.norm(ball_) if np.allclose(ball_,0.0,rtol=0.0,atol=1.0e-16): @@ -121,14 +121,14 @@ def ball_to_cube(ball): else: q2 = qxy + np.max(np.abs(xyz2))**2 sq2 = np.sqrt(q2) - q = (beta/np.sqrt(2.0)/R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2)) + q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2)) tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0) Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \ np.array([np.arccos(tt)/np.pi*12.0,1.0]) Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv) # inverse M_1 - cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /sc + cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc # reverse the coordinates back to the regular order according to the original pyramid number cube = cube[p[1]]