combined J2 and I2 isotropic mechanical response. Default is identical to old plastic_j2. /dilatation/ flag adds (spherical) Li calculation based on hydrostatic pressure.

This commit is contained in:
Tias Maiti 2016-01-08 19:45:20 +00:00
parent 6cf92913a3
commit a30b596e7f
4 changed files with 745 additions and 7 deletions

View File

@ -306,8 +306,9 @@ KINEMATICS_FILES = \
kinematics_vacancy_strain.o kinematics_hydrogen_strain.o kinematics_vacancy_strain.o kinematics_hydrogen_strain.o
PLASTIC_FILES = \ PLASTIC_FILES = \
plastic_dislotwin.o plastic_disloUCLA.o plastic_j2.o plastic_phenopowerlaw.o \ plastic_dislotwin.o plastic_disloUCLA.o plastic_isotropic.o plastic_j2.o \
plastic_titanmod.o plastic_nonlocal.o plastic_none.o plastic_phenoplus.o plastic_phenopowerlaw.o plastic_titanmod.o plastic_nonlocal.o plastic_none.o \
plastic_phenoplus.o
THERMAL_FILES = \ THERMAL_FILES = \
thermal_isothermal.o thermal_adiabatic.o thermal_conduction.o thermal_isothermal.o thermal_adiabatic.o thermal_conduction.o
@ -569,6 +570,9 @@ plastic_phenopowerlaw.o: plastic_phenopowerlaw.f90 \
plastic_phenoplus.o: plastic_phenoplus.f90 \ plastic_phenoplus.o: plastic_phenoplus.f90 \
lattice.o lattice.o
plastic_isotropic.o: plastic_isotropic.f90 \
lattice.o
plastic_j2.o: plastic_j2.f90 \ plastic_j2.o: plastic_j2.f90 \
lattice.o lattice.o

View File

@ -76,6 +76,7 @@ subroutine constitutive_init()
phase_kinematics, & phase_kinematics, &
ELASTICITY_hooke_ID, & ELASTICITY_hooke_ID, &
PLASTICITY_none_ID, & PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_j2_ID, & PLASTICITY_j2_ID, &
PLASTICITY_phenopowerlaw_ID, & PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, & PLASTICITY_phenoplus_ID, &
@ -99,6 +100,7 @@ subroutine constitutive_init()
KINEMATICS_hydrogen_strain_ID, & KINEMATICS_hydrogen_strain_ID, &
ELASTICITY_HOOKE_label, & ELASTICITY_HOOKE_label, &
PLASTICITY_NONE_label, & PLASTICITY_NONE_label, &
PLASTICITY_ISOTROPIC_label, &
PLASTICITY_J2_label, & PLASTICITY_J2_label, &
PLASTICITY_PHENOPOWERLAW_label, & PLASTICITY_PHENOPOWERLAW_label, &
PLASTICITY_PHENOPLUS_label, & PLASTICITY_PHENOPLUS_label, &
@ -119,6 +121,7 @@ subroutine constitutive_init()
sourceState sourceState
use plastic_none use plastic_none
use plastic_isotropic
use plastic_j2 use plastic_j2
use plastic_phenopowerlaw use plastic_phenopowerlaw
use plastic_phenoplus use plastic_phenoplus
@ -161,6 +164,7 @@ subroutine constitutive_init()
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present... if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
if (any(phase_plasticity == PLASTICITY_NONE_ID)) call plastic_none_init if (any(phase_plasticity == PLASTICITY_NONE_ID)) call plastic_none_init
if (any(phase_plasticity == PLASTICITY_ISOTROPIC_ID)) call plastic_isotropic_init(FILEUNIT)
if (any(phase_plasticity == PLASTICITY_J2_ID)) call plastic_j2_init(FILEUNIT) if (any(phase_plasticity == PLASTICITY_J2_ID)) call plastic_j2_init(FILEUNIT)
if (any(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID)) call plastic_phenopowerlaw_init(FILEUNIT) if (any(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID)) call plastic_phenopowerlaw_init(FILEUNIT)
if (any(phase_plasticity == PLASTICITY_PHENOPLUS_ID)) call plastic_phenoplus_init(FILEUNIT) if (any(phase_plasticity == PLASTICITY_PHENOPLUS_ID)) call plastic_phenoplus_init(FILEUNIT)
@ -220,6 +224,11 @@ subroutine constitutive_init()
thisNoutput => null() thisNoutput => null()
thisOutput => null() ! plastic_none_output thisOutput => null() ! plastic_none_output
thisSize => null() ! plastic_none_sizePostResult thisSize => null() ! plastic_none_sizePostResult
case (PLASTICITY_ISOTROPIC_ID)
outputName = PLASTICITY_ISOTROPIC_label
thisNoutput => plastic_isotropic_Noutput
thisOutput => plastic_isotropic_output
thisSize => plastic_isotropic_sizePostResult
case (PLASTICITY_J2_ID) case (PLASTICITY_J2_ID)
outputName = PLASTICITY_J2_label outputName = PLASTICITY_J2_label
thisNoutput => plastic_j2_Noutput thisNoutput => plastic_j2_Noutput
@ -368,6 +377,7 @@ subroutine constitutive_init()
instance = phase_plasticityInstance(phase) ! which instance of a plasticity is present phase instance = phase_plasticityInstance(phase) ! which instance of a plasticity is present phase
select case(phase_plasticity(phase)) ! split per constititution select case(phase_plasticity(phase)) ! split per constititution
case (PLASTICITY_NONE_ID) case (PLASTICITY_NONE_ID)
case (PLASTICITY_ISOTROPIC_ID)
case (PLASTICITY_J2_ID) case (PLASTICITY_J2_ID)
end select end select
enddo enddo
@ -525,6 +535,7 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
temperature, & temperature, &
thermalMapping, & thermalMapping, &
PLASTICITY_NONE_ID, & PLASTICITY_NONE_ID, &
PLASTICITY_ISOTROPIC_ID, &
PLASTICITY_J2_ID, & PLASTICITY_J2_ID, &
PLASTICITY_PHENOPOWERLAW_ID, & PLASTICITY_PHENOPOWERLAW_ID, &
PLASTICITY_PHENOPLUS_ID, & PLASTICITY_PHENOPLUS_ID, &
@ -532,6 +543,8 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
PLASTICITY_DISLOUCLA_ID, & PLASTICITY_DISLOUCLA_ID, &
PLASTICITY_TITANMOD_ID, & PLASTICITY_TITANMOD_ID, &
PLASTICITY_NONLOCAL_ID PLASTICITY_NONLOCAL_ID
use plastic_isotropic, only: &
plastic_isotropic_LpAndItsTangent
use plastic_j2, only: & use plastic_j2, only: &
plastic_j2_LpAndItsTangent plastic_j2_LpAndItsTangent
use plastic_phenopowerlaw, only: & use plastic_phenopowerlaw, only: &
@ -580,6 +593,8 @@ subroutine constitutive_LpAndItsTangent(Lp, dLp_dTstar3333, dLp_dFi3333, Tstar_v
case (PLASTICITY_NONE_ID) case (PLASTICITY_NONE_ID)
Lp = 0.0_pReal Lp = 0.0_pReal
dLp_dMstar = 0.0_pReal dLp_dMstar = 0.0_pReal
case (PLASTICITY_ISOTROPIC_ID)
call plastic_isotropic_LpAndItsTangent(Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_J2_ID) case (PLASTICITY_J2_ID)
call plastic_j2_LpAndItsTangent(Lp,dLp_dMstar,Mstar_v,ipc,ip,el) call plastic_j2_LpAndItsTangent(Lp,dLp_dMstar,Mstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) case (PLASTICITY_PHENOPOWERLAW_ID)
@ -632,14 +647,20 @@ subroutine constitutive_LiAndItsTangent(Li, dLi_dTstar3333, dLi_dFi3333, Tstar_v
math_transpose33, & math_transpose33, &
math_mul33x33 math_mul33x33
use material, only: & use material, only: &
phase_plasticity, &
material_phase, &
material_homog, &
mappingConstitutive, &
phase_kinematics, & phase_kinematics, &
phase_Nkinematics, & phase_Nkinematics, &
material_phase, & PLASTICITY_isotropic_ID, &
KINEMATICS_cleavage_opening_ID, & KINEMATICS_cleavage_opening_ID, &
KINEMATICS_slipplane_opening_ID, & KINEMATICS_slipplane_opening_ID, &
KINEMATICS_thermal_expansion_ID, & KINEMATICS_thermal_expansion_ID, &
KINEMATICS_vacancy_strain_ID, & KINEMATICS_vacancy_strain_ID, &
KINEMATICS_hydrogen_strain_ID KINEMATICS_hydrogen_strain_ID
use plastic_isotropic, only: &
plastic_isotropic_LiAndItsTangent
use kinematics_cleavage_opening, only: & use kinematics_cleavage_opening, only: &
kinematics_cleavage_opening_LiAndItsTangent kinematics_cleavage_opening_LiAndItsTangent
use kinematics_slipplane_opening, only: & use kinematics_slipplane_opening, only: &
@ -675,12 +696,27 @@ subroutine constitutive_LiAndItsTangent(Li, dLi_dTstar3333, dLi_dFi3333, Tstar_v
real(pReal) :: & real(pReal) :: &
detFi detFi
integer(pInt) :: & integer(pInt) :: &
i, j, kinematics i, j, kinematics, phase, homog
phase = material_phase(ipc,ip,el)
homog = material_homog( ip,el)
Li = 0.0_pReal Li = 0.0_pReal
dLi_dTstar3333 = 0.0_pReal dLi_dTstar3333 = 0.0_pReal
dLi_dFi3333 = 0.0_pReal dLi_dFi3333 = 0.0_pReal
select case (phase_plasticity(phase))
case (PLASTICITY_isotropic_ID)
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dTstar, Tstar_v, ipc, ip, el)
case default
my_Li = 0.0_pReal
my_dLi_dTstar = 0.0_pReal
end select
Li = Li + my_Li
dLi_dTstar3333 = dLi_dTstar3333 + my_dLi_dTstar
do kinematics = 1_pInt, phase_Nkinematics(material_phase(ipc,ip,el)) do kinematics = 1_pInt, phase_Nkinematics(material_phase(ipc,ip,el))
select case (phase_kinematics(kinematics,material_phase(ipc,ip,el))) select case (phase_kinematics(kinematics,material_phase(ipc,ip,el)))
case (KINEMATICS_cleavage_opening_ID) case (KINEMATICS_cleavage_opening_ID)
@ -905,6 +941,7 @@ subroutine constitutive_collectDotState(Tstar_v, FeArray, FpArray, subdt, subfra
thermalMapping, & thermalMapping, &
homogenization_maxNgrains, & homogenization_maxNgrains, &
PLASTICITY_none_ID, & PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_j2_ID, & PLASTICITY_j2_ID, &
PLASTICITY_phenopowerlaw_ID, & PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, & PLASTICITY_phenoplus_ID, &
@ -916,6 +953,8 @@ subroutine constitutive_collectDotState(Tstar_v, FeArray, FpArray, subdt, subfra
SOURCE_damage_anisoBrittle_ID, & SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID, & SOURCE_damage_anisoDuctile_ID, &
SOURCE_thermal_externalheat_ID SOURCE_thermal_externalheat_ID
use plastic_isotropic, only: &
plastic_isotropic_dotState
use plastic_j2, only: & use plastic_j2, only: &
plastic_j2_dotState plastic_j2_dotState
use plastic_phenopowerlaw, only: & use plastic_phenopowerlaw, only: &
@ -967,6 +1006,8 @@ subroutine constitutive_collectDotState(Tstar_v, FeArray, FpArray, subdt, subfra
homog = material_homog( ip,el) homog = material_homog( ip,el)
offset = thermalMapping(homog)%p(ip,el) offset = thermalMapping(homog)%p(ip,el)
select case (phase_plasticity(phase)) select case (phase_plasticity(phase))
case (PLASTICITY_ISOTROPIC_ID)
call plastic_isotropic_dotState (Tstar_v,ipc,ip,el)
case (PLASTICITY_J2_ID) case (PLASTICITY_J2_ID)
call plastic_j2_dotState (Tstar_v,ipc,ip,el) call plastic_j2_dotState (Tstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) case (PLASTICITY_PHENOPOWERLAW_ID)
@ -1116,6 +1157,7 @@ function constitutive_postResults(Tstar_v, FeArray, ipc, ip, el)
thermalMapping, & thermalMapping, &
homogenization_maxNgrains, & homogenization_maxNgrains, &
PLASTICITY_NONE_ID, & PLASTICITY_NONE_ID, &
PLASTICITY_ISOTROPIC_ID, &
PLASTICITY_J2_ID, & PLASTICITY_J2_ID, &
PLASTICITY_PHENOPOWERLAW_ID, & PLASTICITY_PHENOPOWERLAW_ID, &
PLASTICITY_PHENOPLUS_ID, & PLASTICITY_PHENOPLUS_ID, &
@ -1127,10 +1169,9 @@ function constitutive_postResults(Tstar_v, FeArray, ipc, ip, el)
SOURCE_damage_isoDuctile_ID, & SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, & SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID SOURCE_damage_anisoDuctile_ID
use plastic_isotropic, only: &
plastic_isotropic_postResults
use plastic_j2, only: & use plastic_j2, only: &
#ifdef HDF
plastic_j2_postResults2,&
#endif
plastic_j2_postResults plastic_j2_postResults
use plastic_phenopowerlaw, only: & use plastic_phenopowerlaw, only: &
plastic_phenopowerlaw_postResults plastic_phenopowerlaw_postResults
@ -1179,6 +1220,8 @@ function constitutive_postResults(Tstar_v, FeArray, ipc, ip, el)
select case (phase_plasticity(material_phase(ipc,ip,el))) select case (phase_plasticity(material_phase(ipc,ip,el)))
case (PLASTICITY_TITANMOD_ID) case (PLASTICITY_TITANMOD_ID)
constitutive_postResults(startPos:endPos) = plastic_titanmod_postResults(ipc,ip,el) constitutive_postResults(startPos:endPos) = plastic_titanmod_postResults(ipc,ip,el)
case (PLASTICITY_ISOTROPIC_ID)
constitutive_postResults(startPos:endPos) = plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
case (PLASTICITY_J2_ID) case (PLASTICITY_J2_ID)
constitutive_postResults(startPos:endPos) = plastic_j2_postResults(Tstar_v,ipc,ip,el) constitutive_postResults(startPos:endPos) = plastic_j2_postResults(Tstar_v,ipc,ip,el)
case (PLASTICITY_PHENOPOWERLAW_ID) case (PLASTICITY_PHENOPOWERLAW_ID)

View File

@ -25,6 +25,7 @@ module material
character(len=*), parameter, public :: & character(len=*), parameter, public :: &
ELASTICITY_hooke_label = 'hooke', & ELASTICITY_hooke_label = 'hooke', &
PLASTICITY_none_label = 'none', & PLASTICITY_none_label = 'none', &
PLASTICITY_isotropic_label = 'isotropic', &
PLASTICITY_j2_label = 'j2', & PLASTICITY_j2_label = 'j2', &
PLASTICITY_phenopowerlaw_label = 'phenopowerlaw', & PLASTICITY_phenopowerlaw_label = 'phenopowerlaw', &
PLASTICITY_phenoplus_label = 'phenoplus', & PLASTICITY_phenoplus_label = 'phenoplus', &
@ -74,6 +75,7 @@ module material
enum, bind(c) enum, bind(c)
enumerator :: PLASTICITY_undefined_ID, & enumerator :: PLASTICITY_undefined_ID, &
PLASTICITY_none_ID, & PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_j2_ID, & PLASTICITY_j2_ID, &
PLASTICITY_phenopowerlaw_ID, & PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, & PLASTICITY_phenoplus_ID, &
@ -311,6 +313,7 @@ module material
material_init, & material_init, &
ELASTICITY_hooke_ID ,& ELASTICITY_hooke_ID ,&
PLASTICITY_none_ID, & PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_J2_ID, & PLASTICITY_J2_ID, &
PLASTICITY_phenopowerlaw_ID, & PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, & PLASTICITY_phenoplus_ID, &
@ -977,6 +980,8 @@ subroutine material_parsePhase(fileUnit,myPart)
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case (PLASTICITY_NONE_label) case (PLASTICITY_NONE_label)
phase_plasticity(section) = PLASTICITY_NONE_ID phase_plasticity(section) = PLASTICITY_NONE_ID
case (PLASTICITY_ISOTROPIC_label)
phase_plasticity(section) = PLASTICITY_ISOTROPIC_ID
case (PLASTICITY_J2_label) case (PLASTICITY_J2_label)
phase_plasticity(section) = PLASTICITY_J2_ID phase_plasticity(section) = PLASTICITY_J2_ID
case (PLASTICITY_PHENOPOWERLAW_label) case (PLASTICITY_PHENOPOWERLAW_label)

686
code/plastic_isotropic.f90 Normal file
View File

@ -0,0 +1,686 @@
!--------------------------------------------------------------------------------------------------
! $Id: plastic_isotropic.f90 4434 2015-08-28 10:55:38Z MPIE\p.shanthraj $
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic (ISOTROPIC) plasticity
!> @details Isotropic (ISOTROPIC) Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module plastic_isotropic
#ifdef HDF
use hdf5, only: &
HID_T
#endif
use prec, only: &
pReal,&
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_isotropic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
plastic_isotropic_Noutput !< number of outputs per instance
logical, dimension(:), allocatable, private :: &
plastic_isotropic_dilatation !< flag to indicate dilatation contribution of plasticity
real(pReal), dimension(:), allocatable, private :: &
plastic_isotropic_fTaylor, & !< Taylor factor
plastic_isotropic_tau0, & !< initial plastic stress
plastic_isotropic_gdot0, & !< reference velocity
plastic_isotropic_n, & !< Visco-plastic parameter
!--------------------------------------------------------------------------------------------------
! h0 as function of h0 = A + B log (gammadot)
plastic_isotropic_h0, &
plastic_isotropic_h0_slopeLnRate, &
plastic_isotropic_tausat, & !< final plastic stress
plastic_isotropic_a, &
plastic_isotropic_aTolResistance, &
plastic_isotropic_aTolShear, &
!--------------------------------------------------------------------------------------------------
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
plastic_isotropic_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
enum, bind(c)
enumerator :: undefined_ID, &
flowstress_ID, &
strainrate_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
plastic_isotropic_outputID !< ID of each post result output
#ifdef HDF
type plastic_isotropic_tOutput
real(pReal), dimension(:), allocatable, private :: &
flowstress, &
strainrate
logical :: flowstressActive = .false., strainrateActive = .false. ! if we can write the output block wise, this is not needed anymore because we can do an if(allocated(xxx))
end type plastic_isotropic_tOutput
type(plastic_isotropic_tOutput), allocatable, dimension(:) :: plastic_isotropic_Output2
integer(HID_T), allocatable, dimension(:) :: outID
#endif
public :: &
plastic_isotropic_init, &
plastic_isotropic_LpAndItsTangent, &
plastic_isotropic_LiAndItsTangent, &
plastic_isotropic_dotState, &
plastic_isotropic_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
#ifdef HDF
use hdf5
#endif
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use numerics, only: &
analyticJaco, &
worldrank, &
numerics_integrator
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_error, &
IO_timeStamp, &
#ifdef HDF
tempResults, &
HDF5_addGroup, &
HDF5_addScalarDataset,&
#endif
IO_EOF
use material, only: &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput, &
PLASTICITY_ISOTROPIC_label, &
PLASTICITY_ISOTROPIC_ID, &
material_phase, &
plasticState, &
MATERIAL_partPhase
use lattice
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: &
o, &
phase, &
maxNinstance, &
instance, &
mySize, &
sizeDotState, &
sizeState, &
sizeDeltaState
character(len=65536) :: &
tag = '', &
line = ''
integer(pInt) :: NofMyPhase
#ifdef HDF
character(len=5) :: &
str1
integer(HID_T) :: ID,ID2,ID4
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_ISOTROPIC_label//' init -+>>>'
write(6,'(a)') ' $Id: plastic_isotropic.f90 4434 2015-08-28 10:55:38Z MPIE\p.shanthraj $'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_plasticity == PLASTICITY_ISOTROPIC_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
#ifdef HDF
allocate(plastic_isotropic_Output2(maxNinstance))
allocate(outID(maxNinstance))
#endif
allocate(plastic_isotropic_sizePostResults(maxNinstance), source=0_pInt)
allocate(plastic_isotropic_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
allocate(plastic_isotropic_output(maxval(phase_Noutput), maxNinstance))
plastic_isotropic_output = ''
allocate(plastic_isotropic_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(plastic_isotropic_Noutput(maxNinstance), source=0_pInt)
allocate(plastic_isotropic_fTaylor(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tau0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_gdot0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_n(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_h0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_h0_slopeLnRate(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_a(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_aTolResistance(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_aTolShear (maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitA(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitB(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitC(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitD(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_dilatation(maxNinstance), source=.false.)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then
instance = phase_plasticityInstance(phase)
#ifdef HDF
outID(instance)=HDF5_addGroup(str1,tempResults)
#endif
endif
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('flowstress')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = flowstress_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'flowstress','MPa')
allocate(plastic_isotropic_Output2(instance)%flowstress(myConstituents))
plastic_isotropic_Output2(instance)%flowstressActive = .true.
#endif
case ('strainrate')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = strainrate_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'strainrate','1/s')
allocate(plastic_isotropic_Output2(instance)%strainrate(myConstituents))
plastic_isotropic_Output2(instance)%strainrateActive = .true.
#endif
case default
end select
case ('/dilatation/')
plastic_isotropic_dilatation(instance) = .true.
case ('tau0')
plastic_isotropic_tau0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_tau0(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('gdot0')
plastic_isotropic_gdot0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_gdot0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('n')
plastic_isotropic_n(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_n(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('h0')
plastic_isotropic_h0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('h0_slope','slopelnrate')
plastic_isotropic_h0_slopeLnRate(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat')
plastic_isotropic_tausat(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_tausat(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('tausat_sinhfita')
plastic_isotropic_tausat_SinhFitA(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitb')
plastic_isotropic_tausat_SinhFitB(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitc')
plastic_isotropic_tausat_SinhFitC(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitd')
plastic_isotropic_tausat_SinhFitD(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('a', 'w0')
plastic_isotropic_a(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_a(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('taylorfactor')
plastic_isotropic_fTaylor(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_fTaylor(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('atol_resistance')
plastic_isotropic_aTolResistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_aTolResistance(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('atol_shear')
plastic_isotropic_aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt)
case default
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_plasticityInstance(phase)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (plastic_isotropic_aTolShear(instance) <= 0.0_pReal) &
plastic_isotropic_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
select case(plastic_isotropic_outputID(o,instance))
case(flowstress_ID,strainrate_ID)
mySize = 1_pInt
case default
end select
outputFound: if (mySize > 0_pInt) then
plastic_isotropic_sizePostResult(o,instance) = mySize
plastic_isotropic_sizePostResults(instance) = &
plastic_isotropic_sizePostResults(instance) + mySize
endif outputFound
enddo outputsLoop
!--------------------------------------------------------------------------------------------------
! allocate state arrays
sizeState = 2_pInt
sizeDotState = sizeState
sizeDeltaState = 0_pInt
plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%sizePostResults = plastic_isotropic_sizePostResults(instance)
plasticState(phase)%nSlip = 1
plasticState(phase)%nTwin = 0
plasticState(phase)%nTrans= 0
allocate(plasticState(phase)%aTolState ( sizeState))
plasticState(phase)%aTolState(1) = plastic_isotropic_aTolResistance(instance)
plasticState(phase)%aTolState(2) = plastic_isotropic_aTolShear(instance)
allocate(plasticState(phase)%state0 ( sizeState,NofMyPhase))
plasticState(phase)%state0(1,1:NofMyPhase) = plastic_isotropic_tau0(instance)
plasticState(phase)%state0(2,1:NofMyPhase) = 0.0_pReal
allocate(plasticState(phase)%partionedState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%subState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%state ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase),source=0.0_pReal)
if (.not. analyticJaco) then
allocate(plasticState(phase)%state_backup ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%previousDotState2(sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NofMyPhase)
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NofMyPhase)
endif myPhase
enddo initializeInstances
end subroutine plastic_isotropic_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_deviatoric33, &
math_mul33xx33, &
math_transpose33
use material, only: &
mappingConstitutive, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: &
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3) :: &
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: &
instance, &
k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
else
gamma_dot = plastic_isotropic_gdot0(instance) &
* (sqrt(1.5_pReal) * norm_Tstar_dev / (plastic_isotropic_fTaylor(instance) * &
plasticState(mappingConstitutive(2,ipc,ip,el))%state(1,mappingConstitutive(1,ipc,ip,el)))) &
**plastic_isotropic_n(instance)
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/plastic_isotropic_fTaylor(instance)
if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CONST isotropic >> at el ip g ',el,ip,ipc
write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CONST isotropic >> Tstar (dev) / MPa', &
math_transpose33(Tstar_dev_33(1:3,1:3))*1.0e-6_pReal
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> norm Tstar / MPa', norm_Tstar_dev*1.0e-6_pReal
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> gdot', gamma_dot
end if
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / plastic_isotropic_fTaylor(instance) * &
dLp_dTstar_3333 / norm_Tstar_dev)
end if
end subroutine plastic_isotropic_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_spherical33, &
math_mul33xx33
use material, only: &
mappingConstitutive, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Li !< plastic velocity gradient
real(pReal), dimension(9,9) :: &
dLi_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_sph_33 !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_sph, & !< euclidean norm of Tstar_sph
squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph
integer(pInt) :: &
instance, &
k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
Li = 0.0_pReal
dLi_dTstar_3333 = 0.0_pReal
Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33)
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
if (plastic_isotropic_dilatation(instance)) then
gamma_dot = plastic_isotropic_gdot0(instance) &
* (sqrt(1.5_pReal) * norm_Tstar_sph / (plastic_isotropic_fTaylor(instance) * &
plasticState(mappingConstitutive(2,ipc,ip,el))%state(1,mappingConstitutive(1,ipc,ip,el)))) &
**plastic_isotropic_n(instance)
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/plastic_isotropic_fTaylor(instance)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Li
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * &
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
dLi_dTstar_3333 = gamma_dot / plastic_isotropic_fTaylor(instance) * &
dLi_dTstar_3333 / norm_Tstar_sph
end if
end subroutine plastic_isotropic_LiAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
mappingConstitutive, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
gamma_dot, & !< strainrate
hardening, & !< hardening coefficient
saturation, & !< saturation resistance
norm_Tstar_v !< euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
of = mappingConstitutive(1,ipc,ip,el)
ph = mappingConstitutive(2,ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (plastic_isotropic_dilatation(instance)) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
end if
!--------------------------------------------------------------------------------------------------
! strain rate
gamma_dot = plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!-----------------------------------------------------------------------------------
(plastic_isotropic_fTaylor(instance)*plasticState(ph)%state(1,of)) )**plastic_isotropic_n(instance)
!--------------------------------------------------------------------------------------------------
! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then
if (abs(plastic_isotropic_tausat_SinhFitA(instance)) <= tiny(0.0_pReal)) then
saturation = plastic_isotropic_tausat(instance)
else
saturation = ( plastic_isotropic_tausat(instance) &
+ ( log( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance)&
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitD(instance))&
+ sqrt( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance) &
)**(2.0_pReal / plastic_isotropic_tausat_SinhFitD(instance)) &
+ 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitC(instance)) &
/ ( plastic_isotropic_tausat_SinhFitB(instance) &
* (gamma_dot / plastic_isotropic_gdot0(instance))**(1.0_pReal / plastic_isotropic_n(instance)) &
) &
)
endif
hardening = ( plastic_isotropic_h0(instance) + plastic_isotropic_h0_slopeLnRate(instance) * log(gamma_dot) ) &
* abs( 1.0_pReal - plasticState(ph)%state(1,of)/saturation )**plastic_isotropic_a(instance) &
* sign(1.0_pReal, 1.0_pReal - plasticState(ph)%state(1,of)/saturation)
else
hardening = 0.0_pReal
endif
plasticState(ph)%dotState(1,of) = hardening * gamma_dot
plasticState(ph)%dotState(2,of) = gamma_dot
end subroutine plastic_isotropic_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
material_phase, &
plasticState, &
mappingConstitutive, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(plastic_isotropic_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
plastic_isotropic_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_v ! euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph, & !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
c, &
o
of = mappingConstitutive(1,ipc,ip,el)
ph = mappingConstitutive(2,ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (plastic_isotropic_dilatation(instance)) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
end if
c = 0_pInt
plastic_isotropic_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
select case(plastic_isotropic_outputID(o,instance))
case (flowstress_ID)
plastic_isotropic_postResults(c+1_pInt) = plasticState(ph)%state(1,of)
c = c + 1_pInt
case (strainrate_ID)
plastic_isotropic_postResults(c+1_pInt) = &
plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!----------------------------------------------------------------------------------
(plastic_isotropic_fTaylor(instance) * plasticState(ph)%state(1,of)) ) ** plastic_isotropic_n(instance)
c = c + 1_pInt
end select
enddo outputsLoop
end function plastic_isotropic_postResults
end module plastic_isotropic