started to rework test class. Martin probably needs to check and continue improving on this.
This commit is contained in:
parent
cef87db699
commit
a18a1066e2
|
@ -39,7 +39,7 @@ class Test():
|
|||
+'----------------------------------------------------------------')
|
||||
self.dirBase = os.path.dirname(os.path.realpath(sys.modules[self.__class__.__module__].__file__))
|
||||
self.parser = OptionParser(
|
||||
description = test_description+' (using class: $Id run_test.py 1285 2012-02-09 08:54:09Z MPIE\m.diehl $)',
|
||||
description = test_description+' (using class: $Id$)',
|
||||
usage='./test.py [options]')
|
||||
self.updateRequested = False
|
||||
|
||||
|
@ -153,6 +153,13 @@ class Test():
|
|||
return os.path.normpath(os.path.join(self.dirBase,'proof/'))
|
||||
|
||||
|
||||
def fileInRoot(self,dir,file):
|
||||
'''
|
||||
Path to a file in the root directory of DAMASK.
|
||||
'''
|
||||
return os.path.join(damask.Environment().rootDir(),dir,file)
|
||||
|
||||
|
||||
def fileInReference(self,file):
|
||||
'''
|
||||
Path to a file in the refrence directory for the test.
|
||||
|
@ -174,6 +181,22 @@ class Test():
|
|||
return os.path.join(self.dirProof(),file)
|
||||
|
||||
|
||||
def copy(self, mapA, mapB,
|
||||
A = [], B = []):
|
||||
'''
|
||||
copy list of files from (mapped) source to target.
|
||||
mapA/B is one of self.fileInX.
|
||||
'''
|
||||
|
||||
if not B or len(B) == 0: B = A
|
||||
|
||||
for source,target in zip(map(mapA,A),map(mapB,B)):
|
||||
try:
|
||||
shutil.copy2(source,target)
|
||||
except:
|
||||
logging.critical('error copying {} to {}'.format(source,target))
|
||||
|
||||
|
||||
def copy_Reference2Current(self,sourcefiles=[],targetfiles=[]):
|
||||
|
||||
if len(targetfiles) == 0: targetfiles = sourcefiles
|
||||
|
@ -241,10 +264,10 @@ class Test():
|
|||
|
||||
import numpy as np
|
||||
logging.info('comparing\n '+File1+'\n '+File2)
|
||||
table1 = damask.ASCIItable(File1,readonly=True)
|
||||
table1 = damask.ASCIItable(name=File1,readonly=True)
|
||||
table1.head_read()
|
||||
len1=len(table1.info)+2
|
||||
table2 = damask.ASCIItable(File2,readonly=True)
|
||||
table2 = damask.ASCIItable(name=File2,readonly=True)
|
||||
table2.head_read()
|
||||
len2=len(table2.info)+2
|
||||
|
||||
|
@ -279,7 +302,7 @@ class Test():
|
|||
cur1Name = self.fileInCurrent(cur1)
|
||||
return self.compare_Array(cur0Name,cur1Name)
|
||||
|
||||
def compare_Table(self,headings0,file0,headings1,file1,normHeadings='',normType=None,\
|
||||
def compare_Table(self,headings0,file0,headings1,file1,normHeadings='',normType=None,
|
||||
absoluteTolerance=False,perLine=False,skipLines=[]):
|
||||
|
||||
import numpy as np
|
||||
|
@ -312,9 +335,9 @@ class Test():
|
|||
else:
|
||||
raise Exception('trying to compare %i with %i normed by %i data sets'%(len(headings0),len(headings1),len(normHeadings)))
|
||||
|
||||
table0 = damask.ASCIItable(file0,readonly=True)
|
||||
table0 = damask.ASCIItable(name=file0,readonly=True)
|
||||
table0.head_read()
|
||||
table1 = damask.ASCIItable(file1,readonly=True)
|
||||
table1 = damask.ASCIItable(name=file1,readonly=True)
|
||||
table1.head_read()
|
||||
|
||||
for i in xrange(dataLength):
|
||||
|
@ -383,41 +406,66 @@ class Test():
|
|||
return maxError
|
||||
|
||||
|
||||
def compare_Table2(self,file0,file1,headings0=None,headings1=None,rtol=1e-5,atol=1e-8,threshold = -1.0,debug=False):
|
||||
def compare_Tables(self,
|
||||
files = [None,None], # list of file names
|
||||
columns = [None], # list of list of column labels (per file)
|
||||
rtol = 1e-5,
|
||||
atol = 1e-8,
|
||||
threshold = -1.0,
|
||||
debug = False):
|
||||
|
||||
'''
|
||||
compare two tables with np.allclose
|
||||
threshold can be used to ignore small values (put any negative number to disable)
|
||||
table will be row-wise normalized
|
||||
compare tables with np.allclose
|
||||
threshold can be used to ignore small values (a negative number disables this feature)
|
||||
'''
|
||||
#http://stackoverflow.com/questions/8904694/how-to-normalize-a-2-dimensional-numpy-array-in-python-less-verbose
|
||||
import numpy as np
|
||||
logging.info('comparing ASCII Tables\n %s \n %s'%(file0,file1))
|
||||
from collections import Iterable
|
||||
|
||||
if headings1 == None: headings1=headings0
|
||||
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
||||
files = [str(files)]
|
||||
|
||||
table0 = damask.ASCIItable(file0,readonly=True)
|
||||
table0.head_read()
|
||||
table0.data_readArray(headings0)
|
||||
row_sums0 = table0.data.sum(axis=1)*table0.data.shape[0]
|
||||
table0.data /= row_sums0[:,np.newaxis]
|
||||
if isinstance(columns, (str,int,float)): # single item --> one copy per file
|
||||
columns = [str(columns)]*len(files)
|
||||
|
||||
table1 = damask.ASCIItable(file1,readonly=True)
|
||||
table1.head_read()
|
||||
table1.data_readArray(headings1)
|
||||
row_sums1 = table1.data.sum(axis=1)*table1.data.shape[0]
|
||||
table1.data /= row_sums1[:,np.newaxis]
|
||||
columns += [None]*(len(files)-len(columns)) # extend to same length as files
|
||||
columns = columns[:len(files)] # truncate to same length as files
|
||||
|
||||
logging.info('comparing ASCIItables')
|
||||
for i in xrange(len(columns)):
|
||||
columns[i] = columns[0] if not columns[i] else \
|
||||
([columns[i]] if not (isinstance(columns[i], Iterable) and not isinstance(columns[i], str)) else \
|
||||
columns[i]
|
||||
)
|
||||
logging.info(files[i]+':'+','.join(columns[i]))
|
||||
|
||||
if len(files) < 2: return True # single table is always close to itself...
|
||||
|
||||
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
||||
|
||||
if debug:
|
||||
t0 = np.where(np.abs(table0.data)<threshold,0.0,table0.data)
|
||||
t1 = np.where(np.abs(table1.data)<threshold,0.0,table1.data)
|
||||
print np.amin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
|
||||
i = np.argmin(np.abs(t1)*rtol+atol-np.abs(t0-t1))
|
||||
print t0.flatten()[i],t1.flatten()[i]
|
||||
maximum = np.zeros(len(columns[0]),dtype='f')
|
||||
data = []
|
||||
for table,labels in zip(tables,columns):
|
||||
table.head_read()
|
||||
table.data_readArray(labels)
|
||||
data.append(table.data)
|
||||
maximum += np.abs(table.data).max(axis=0)
|
||||
table.close()
|
||||
|
||||
maximum /= len(tables)
|
||||
for i in xrange(len(data)):
|
||||
data[i] /= maximum
|
||||
|
||||
mask = np.zeros_like(table.data,dtype='bool')
|
||||
for table in data:
|
||||
mask |= np.where(np.abs(table)<threshold) # mask out (all) tiny values
|
||||
|
||||
return np.allclose(np.where(np.abs(table0.data)<threshold,0.0,table0.data),
|
||||
np.where(np.abs(table1.data)<threshold,0.0,table1.data),rtol,atol)
|
||||
allclose = True # start optimistic
|
||||
for i in xrange(1,len(data)):
|
||||
allclose &= np.allclose(np.where(mask,0.0,data[i-1]),
|
||||
np.where(mask,0.0,data[i ]),rtol,atol) # accumulate "pessimism"
|
||||
|
||||
return allclose
|
||||
|
||||
|
||||
def compare_TableRefCur(self,headingsRef,ref,headingsCur='',cur='',normHeadings='',normType=None,\
|
||||
|
|
Loading…
Reference in New Issue