result typehints revision
This commit is contained in:
parent
412884ea82
commit
a0f019a0cf
|
@ -25,6 +25,8 @@ from . import mechanics
|
|||
from . import tensor
|
||||
from . import util
|
||||
|
||||
from ._typehints import FloatSequence
|
||||
|
||||
h5py3 = h5py.__version__[0] == '3'
|
||||
|
||||
chunk_size = 1024**2//8 # for compression in HDF5
|
||||
|
@ -588,7 +590,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_absolute(x: Dict[str, Any]) -> Dict[str, Union[Dict[str, Union[str, int, slice]], str, np.ndarray]]:
|
||||
def _add_absolute(x: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': np.abs(x['data']),
|
||||
'label': f'|{x["label"]}|',
|
||||
|
@ -612,7 +614,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_calculation(**kwargs) -> Dict[str, Union[Dict[str, str], str]]:
|
||||
def _add_calculation(**kwargs):
|
||||
formula = kwargs['formula']
|
||||
for d in re.findall(r'#(.*?)#',formula):
|
||||
formula = formula.replace(f'#{d}#',f"kwargs['{d}']['data']")
|
||||
|
@ -678,7 +680,7 @@ class Result:
|
|||
... 'Mises equivalent of the Cauchy stress')
|
||||
|
||||
"""
|
||||
dataset_mapping: Dict[str, str] = {d:d for d in set(re.findall(r'#(.*?)#',formula))} # datasets used in the formula
|
||||
dataset_mapping = {d:d for d in set(re.findall(r'#(.*?)#',formula))} # datasets used in the formula
|
||||
args = {'formula':formula,'label':name,'unit':unit,'description':description}
|
||||
self._add_generic_pointwise(self._add_calculation,dataset_mapping,args)
|
||||
|
||||
|
@ -788,7 +790,7 @@ class Result:
|
|||
elif eigenvalue == 'min':
|
||||
label,p = 'minimum',0
|
||||
else:
|
||||
raise TypeError
|
||||
raise TypeError("invalid eigenvalue passed to function: {}".format(eigenvalue))
|
||||
|
||||
return {
|
||||
'data': tensor.eigenvalues(T_sym['data'])[:,p],
|
||||
|
@ -862,7 +864,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_IPF_color(l: Sequence[float],
|
||||
def _add_IPF_color(l: FloatSequence,
|
||||
q: Dict[str, Any]) -> Dict[str, Any]:
|
||||
m = util.scale_to_coprime(np.array(l))
|
||||
lattice = q['meta']['lattice']
|
||||
|
@ -905,7 +907,7 @@ class Result:
|
|||
|
||||
|
||||
@staticmethod
|
||||
def _add_maximum_shear(T_sym: dict) -> dict:
|
||||
def _add_maximum_shear(T_sym: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return {
|
||||
'data': mechanics.maximum_shear(T_sym['data']),
|
||||
'label': f"max_shear({T_sym['label']})",
|
||||
|
@ -1064,8 +1066,8 @@ class Result:
|
|||
|
||||
@staticmethod
|
||||
def _add_pole(q: Dict[str, Any],
|
||||
uvw: np.ndarray,
|
||||
hkl: np.ndarray,
|
||||
uvw: FloatSequence,
|
||||
hkl: FloatSequence,
|
||||
with_symmetry: bool) -> Dict[str, Any]:
|
||||
c = q['meta']['c/a'] if 'c/a' in q['meta'] else 1
|
||||
pole = Orientation(q['data'],lattice=q['meta']['lattice'],a=1,c=c).to_pole(uvw=uvw,hkl=hkl,with_symmetry=with_symmetry)
|
||||
|
|
Loading…
Reference in New Issue