more specific typehints
This commit is contained in:
parent
28cb72ced0
commit
a0dc25c16e
|
@ -22,7 +22,7 @@ from . import grid_filters
|
|||
from . import mechanics
|
||||
from . import tensor
|
||||
from . import util
|
||||
from ._typehints import FloatSequence, IntSequence
|
||||
from ._typehints import FloatSequence, IntSequence, DADF5Dataset
|
||||
|
||||
h5py3 = h5py.__version__[0] == '3'
|
||||
|
||||
|
@ -36,7 +36,7 @@ def _read(dataset: h5py._hl.dataset.Dataset) -> np.ndarray:
|
|||
return np.array(dataset,dtype=dtype)
|
||||
|
||||
def _match(requested,
|
||||
existing: h5py._hl.base.KeysViewHDF5) -> List[Any]:
|
||||
existing: h5py._hl.base.KeysViewHDF5) -> List[str]:
|
||||
"""Find matches among two sets of labels."""
|
||||
def flatten_list(list_of_lists):
|
||||
return [e for e_ in list_of_lists for e in e_]
|
||||
|
@ -609,7 +609,7 @@ class Result:
|
|||
Name of scalar, vector, or tensor dataset to take absolute value of.
|
||||
|
||||
"""
|
||||
def absolute(x: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def absolute(x: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': np.abs(x['data']),
|
||||
'label': f'|{x["label"]}|',
|
||||
|
@ -671,7 +671,7 @@ class Result:
|
|||
... 'Mises equivalent of the Cauchy stress')
|
||||
|
||||
"""
|
||||
def calculation(**kwargs) -> Dict[str, Any]:
|
||||
def calculation(**kwargs) -> DADF5Dataset:
|
||||
formula = kwargs['formula']
|
||||
for d in re.findall(r'#(.*?)#',formula):
|
||||
formula = formula.replace(f'#{d}#',f"kwargs['{d}']['data']")
|
||||
|
@ -712,7 +712,7 @@ class Result:
|
|||
|
||||
"""
|
||||
|
||||
def stress_Cauchy(P: Dict[str, Any], F: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def stress_Cauchy(P: DADF5Dataset, F: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': mechanics.stress_Cauchy(P['data'],F['data']),
|
||||
'label': 'sigma',
|
||||
|
@ -747,7 +747,7 @@ class Result:
|
|||
|
||||
"""
|
||||
|
||||
def determinant(T: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def determinant(T: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': np.linalg.det(T['data']),
|
||||
'label': f"det({T['label']})",
|
||||
|
@ -780,7 +780,7 @@ class Result:
|
|||
|
||||
"""
|
||||
|
||||
def deviator(T: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def deviator(T: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': tensor.deviatoric(T['data']),
|
||||
'label': f"s_{T['label']}",
|
||||
|
@ -817,7 +817,7 @@ class Result:
|
|||
|
||||
"""
|
||||
|
||||
def eigenval(T_sym: Dict[str, Any], eigenvalue: Literal['max, mid, min']) -> Dict[str, Any]:
|
||||
def eigenval(T_sym: DADF5Dataset, eigenvalue: Literal['max, mid, min']) -> DADF5Dataset:
|
||||
if eigenvalue == 'max':
|
||||
label,p = 'maximum',2
|
||||
elif eigenvalue == 'mid':
|
||||
|
@ -856,7 +856,7 @@ class Result:
|
|||
|
||||
"""
|
||||
|
||||
def eigenvector(T_sym: Dict[str, Any], eigenvalue: Literal['max', 'mid', 'min']) -> Dict[str, Any]:
|
||||
def eigenvector(T_sym: DADF5Dataset, eigenvalue: Literal['max', 'mid', 'min']) -> DADF5Dataset:
|
||||
if eigenvalue == 'max':
|
||||
label,p = 'maximum',2
|
||||
elif eigenvalue == 'mid':
|
||||
|
@ -904,13 +904,13 @@ class Result:
|
|||
|
||||
"""
|
||||
|
||||
def IPF_color(l: FloatSequence, q: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def IPF_color(l: FloatSequence, q: DADF5Dataset) -> DADF5Dataset:
|
||||
m = util.scale_to_coprime(np.array(l))
|
||||
lattice = q['meta']['lattice']
|
||||
o = Orientation(rotation = q['data'],lattice=lattice)
|
||||
|
||||
return {
|
||||
'data': np.uint8(o.IPF_color(l)*255),
|
||||
'data': (o.IPF_color(l)*255).astype(np.uint8),
|
||||
'label': 'IPFcolor_({} {} {})'.format(*m),
|
||||
'meta' : {
|
||||
'unit': '8-bit RGB',
|
||||
|
@ -933,7 +933,7 @@ class Result:
|
|||
Name of symmetric tensor dataset.
|
||||
|
||||
"""
|
||||
def maximum_shear(T_sym: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def maximum_shear(T_sym: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': mechanics.maximum_shear(T_sym['data']),
|
||||
'label': f"max_shear({T_sym['label']})",
|
||||
|
@ -976,7 +976,7 @@ class Result:
|
|||
>>> r.add_equivalent_Mises('epsilon_V^0.0(F)')
|
||||
|
||||
"""
|
||||
def equivalent_Mises(T_sym: Dict[str, Any], kind: str) -> Dict[str, Any]:
|
||||
def equivalent_Mises(T_sym: DADF5Dataset, kind: str) -> DADF5Dataset:
|
||||
k = kind
|
||||
if k is None:
|
||||
if T_sym['meta']['unit'] == '1':
|
||||
|
@ -1014,7 +1014,7 @@ class Result:
|
|||
Order of the norm. inf means NumPy's inf object. For details refer to numpy.linalg.norm.
|
||||
|
||||
"""
|
||||
def norm(x: Dict[str, Any], ord: Union[int, float, Literal['fro', 'nuc']]) -> Dict[str, Any]:
|
||||
def norm(x: DADF5Dataset, ord: Union[int, float, Literal['fro', 'nuc']]) -> DADF5Dataset:
|
||||
o = ord
|
||||
if len(x['data'].shape) == 2:
|
||||
axis: Union[int, Tuple[int, int]] = 1
|
||||
|
@ -1062,7 +1062,7 @@ class Result:
|
|||
is taken into account.
|
||||
|
||||
"""
|
||||
def stress_second_Piola_Kirchhoff(P: Dict[str, Any], F: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def stress_second_Piola_Kirchhoff(P: DADF5Dataset, F: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': mechanics.stress_second_Piola_Kirchhoff(P['data'],F['data']),
|
||||
'label': 'S',
|
||||
|
@ -1104,12 +1104,11 @@ class Result:
|
|||
Defaults to True.
|
||||
|
||||
"""
|
||||
def pole(q: Dict[str, Any],
|
||||
uvw: FloatSequence,
|
||||
hkl: FloatSequence,
|
||||
def pole(q: DADF5Dataset,
|
||||
uvw: FloatSequence, hkl: FloatSequence,
|
||||
with_symmetry: bool,
|
||||
normalize: bool) -> Dict[str, Any]:
|
||||
c = q['meta']['c/a'] if 'c/a' in q['meta'] else 1
|
||||
normalize: bool) -> DADF5Dataset:
|
||||
c = q['meta']['c/a'] if 'c/a' in q['meta'] else 1.0
|
||||
brackets = ['[]','()','⟨⟩','{}'][(uvw is None)*1+with_symmetry*2]
|
||||
label = 'p^' + '{}{} {} {}{}'.format(brackets[0],
|
||||
*(uvw if uvw else hkl),
|
||||
|
@ -1149,7 +1148,7 @@ class Result:
|
|||
>>> r.add_rotation('F')
|
||||
|
||||
"""
|
||||
def rotation(F: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def rotation(F: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': mechanics.rotation(F['data']).as_matrix(),
|
||||
'label': f"R({F['label']})",
|
||||
|
@ -1181,7 +1180,7 @@ class Result:
|
|||
>>> r.add_spherical('sigma')
|
||||
|
||||
"""
|
||||
def spherical(T: Dict[str, Any]) -> Dict[str, Any]:
|
||||
def spherical(T: DADF5Dataset) -> DADF5Dataset:
|
||||
return {
|
||||
'data': tensor.spherical(T['data'],False),
|
||||
'label': f"p_{T['label']}",
|
||||
|
@ -1255,7 +1254,7 @@ class Result:
|
|||
| https://de.wikipedia.org/wiki/Verzerrungstensor
|
||||
|
||||
"""
|
||||
def strain(F: Dict[str, Any], t: Literal['V', 'U'], m: float) -> Dict[str, Any]:
|
||||
def strain(F: DADF5Dataset, t: Literal['V', 'U'], m: float) -> DADF5Dataset:
|
||||
side = 'left' if t == 'V' else 'right'
|
||||
return {
|
||||
'data': mechanics.strain(F['data'],t,m),
|
||||
|
@ -1286,7 +1285,7 @@ class Result:
|
|||
Defaults to 'V'.
|
||||
|
||||
"""
|
||||
def stretch_tensor(F: Dict[str, Any], t: str) -> Dict[str, Any]:
|
||||
def stretch_tensor(F: DADF5Dataset, t: str) -> DADF5Dataset:
|
||||
return {
|
||||
'data': (mechanics.stretch_left if t.upper() == 'V' else mechanics.stretch_right)(F['data']),
|
||||
'label': f"{t}({F['label']})",
|
||||
|
@ -1316,7 +1315,7 @@ class Result:
|
|||
i.e. fields resulting from the grid solver.
|
||||
|
||||
"""
|
||||
def curl(f: Dict[str, Any], size: np.ndarray) -> Dict[str, Any]:
|
||||
def curl(f: DADF5Dataset, size: np.ndarray) -> DADF5Dataset:
|
||||
return {
|
||||
'data': grid_filters.curl(size,f['data']),
|
||||
'label': f"curl({f['label']})",
|
||||
|
@ -1345,7 +1344,7 @@ class Result:
|
|||
i.e. fields resulting from the grid solver.
|
||||
|
||||
"""
|
||||
def divergence(f: Dict[str, Any], size: np.ndarray) -> Dict[str, Any]:
|
||||
def divergence(f: DADF5Dataset, size: np.ndarray) -> DADF5Dataset:
|
||||
return {
|
||||
'data': grid_filters.divergence(size,f['data']),
|
||||
'label': f"divergence({f['label']})",
|
||||
|
@ -1374,7 +1373,7 @@ class Result:
|
|||
i.e. fields resulting from the grid solver.
|
||||
|
||||
"""
|
||||
def gradient(f: Dict[str, Any], size: np.ndarray) -> Dict[str, Any]:
|
||||
def gradient(f: DADF5Dataset, size: np.ndarray) -> DADF5Dataset:
|
||||
return {
|
||||
'data': grid_filters.gradient(size,f['data'] if len(f['data'].shape) == 4 else \
|
||||
f['data'].reshape(f['data'].shape+(1,))),
|
||||
|
@ -1390,7 +1389,7 @@ class Result:
|
|||
|
||||
|
||||
def _add_generic_grid(self,
|
||||
func: Callable,
|
||||
func: Callable[..., DADF5Dataset],
|
||||
datasets: Dict[str, str],
|
||||
args: Dict[str, str] = {},
|
||||
constituents = None):
|
||||
|
@ -1441,7 +1440,7 @@ class Result:
|
|||
now.strftime('%Y-%m-%d %H:%M:%S%z').encode()
|
||||
|
||||
for l,v in r['meta'].items():
|
||||
h5_dataset.attrs[l.lower()]=v if h5py3 else v.encode()
|
||||
h5_dataset.attrs[l.lower()]=v.encode() if not h5py3 and type(v) is str else v
|
||||
creator = h5_dataset.attrs['creator'] if h5py3 else \
|
||||
h5_dataset.attrs['creator'].decode()
|
||||
h5_dataset.attrs['creator'] = f'damask.Result.{creator} v{damask.version}' if h5py3 else \
|
||||
|
@ -1451,8 +1450,8 @@ class Result:
|
|||
|
||||
|
||||
def _add_generic_pointwise(self,
|
||||
func: Callable,
|
||||
datasets: Dict[str, Any],
|
||||
func: Callable[..., DADF5Dataset],
|
||||
datasets: Dict[str, str],
|
||||
args: Dict[str, Any] = {}):
|
||||
"""
|
||||
General function to add pointwise data.
|
||||
|
@ -1471,9 +1470,9 @@ class Result:
|
|||
"""
|
||||
|
||||
def job_pointwise(group: str,
|
||||
callback: Callable,
|
||||
callback: Callable[..., DADF5Dataset],
|
||||
datasets: Dict[str, str],
|
||||
args: Dict[str, str]) -> Union[None, Any]:
|
||||
args: Dict[str, str]) -> Union[None, DADF5Dataset]:
|
||||
try:
|
||||
datasets_in = {}
|
||||
with h5py.File(self.fname,'r') as f:
|
||||
|
@ -1561,7 +1560,7 @@ class Result:
|
|||
def get(self,
|
||||
output: Union[str, List[str]] = '*',
|
||||
flatten: bool = True,
|
||||
prune: bool = True) -> Optional[Dict[str,Any]]:
|
||||
prune: bool = True) -> Union[None,Dict[str,Any]]:
|
||||
"""
|
||||
Collect data per phase/homogenization reflecting the group/folder structure in the DADF5 file.
|
||||
|
||||
|
@ -1930,6 +1929,7 @@ class Result:
|
|||
v.save(vtk_dir/f'{self.fname.stem}_inc{inc.split(prefix_inc)[-1].zfill(N_digits)}',
|
||||
parallel=parallel)
|
||||
|
||||
|
||||
def export_DADF5(self,
|
||||
fname,
|
||||
output: Union[str, List[str]] = '*',
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"""Functionality for typehints."""
|
||||
|
||||
from typing import Sequence, Union, Literal, TextIO
|
||||
from typing import Sequence, Union, TypedDict, Literal, TextIO
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
@ -16,3 +16,15 @@ CrystalKinematics = Literal['slip', 'twin']
|
|||
NumpyRngSeed = Union[int, IntSequence, np.random.SeedSequence, np.random.Generator]
|
||||
# BitGenerator does not exists in older numpy versions
|
||||
#NumpyRngSeed = Union[int, IntSequence, np.random.SeedSequence, np.random.BitGenerator, np.random.Generator]
|
||||
|
||||
# https://peps.python.org/pep-0655/
|
||||
# Metadata = TypedDict('Metadata', {'unit': str, 'description': str, 'creator': str, 'lattice': NotRequired[str]})
|
||||
_Metadata = TypedDict('_Metadata', {'lattice': str, 'c/a': float}, total=False)
|
||||
|
||||
class Metadata(_Metadata):
|
||||
unit: str
|
||||
description: str
|
||||
creator: str
|
||||
|
||||
|
||||
DADF5Dataset = TypedDict('DADF5Dataset', {'data': np.ndarray, 'label': str, 'meta': Metadata})
|
||||
|
|
Loading…
Reference in New Issue