simplified logic for single run, now not checking for extra arguments but simply checking if start and end elem/IP are the same

This commit is contained in:
Martin Diehl 2013-04-26 13:23:36 +00:00
parent 60739abb0d
commit 9fb6d8167b
3 changed files with 43 additions and 101 deletions

View File

@ -464,8 +464,6 @@ program DAMASK_spectral_Driver
!--------------------------------------------------------------------------------------------------
! check solution
cutBack = .False.
write(statUnit,*) totalIncsCounter, time, cutBackLevel, &
solres%converged, solres%iterationsNeeded ! write statistics about accepted solution
if(solres%termIll .or. .not. solres%converged) then ! no solution found
if (cutBackLevel < maxCutBack) then ! do cut back
write(6,'(/,a)') ' cut back detected'
@ -485,6 +483,9 @@ program DAMASK_spectral_Driver
else
guess = .true. ! start guessing after first converged (sub)inc
endif
if (.not. cutBack) &
write(statUnit,*) totalIncsCounter, time, cutBackLevel, &
solres%converged, solres%iterationsNeeded ! write statistics about accepted solution
enddo subIncLooping
cutBackLevel = max(0_pInt, cutBackLevel - 1_pInt) ! try half number of subincs next inc
if(solres%converged) then ! report converged inc

View File

@ -1302,7 +1302,7 @@ end subroutine crystallite_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with 4th order explicit Runge Kutta method
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateRK4(gg,ii,ee)
subroutine crystallite_integrateStateRK4()
use prec, only: pInt, &
pReal
use numerics, only: numerics_integrationMode
@ -1338,14 +1338,6 @@ subroutine crystallite_integrateStateRK4(gg,ii,ee)
real(pReal), dimension(4), parameter :: timeStepFraction = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
real(pReal), dimension(4), parameter :: weight = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal] ! weight of slope used for Runge Kutta integration
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
@ -1356,23 +1348,15 @@ subroutine crystallite_integrateStateRK4(gg,ii,ee)
gIter ! bounds for grain iteration
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
RK4dotTemperature ! evolution of Temperature of each grain for Runge Kutta integration
logical singleRun ! flag indicating computation for single (g,i,e) triple
logical :: singleRun ! flag indicating computation for single (g,i,e) triple
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
singleRun = (eIter(1) == eIter(2) .and. iIter(1,e) == iIter(2,e))
! --- FIRST RUNGE KUTTA STEP ---
@ -1574,7 +1558,7 @@ end subroutine crystallite_integrateStateRK4
!> @brief integrate stress, state and Temperature with 5th order Runge-Kutta Cash-Karp method with
!> adaptive step size (use 5th order solution to advance = "local extrapolation")
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateRKCK45(gg,ii,ee)
subroutine crystallite_integrateStateRKCK45()
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
@ -1608,10 +1592,6 @@ subroutine crystallite_integrateStateRKCK45(gg,ii,ee)
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
@ -1678,20 +1658,13 @@ subroutine crystallite_integrateStateRKCK45(gg,ii,ee)
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
singleRun = (eIter(1) == eIter(2) .and. iIter(1,e) == iIter(2,e))
@ -2092,7 +2065,7 @@ end subroutine crystallite_integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateAdaptiveEuler(gg,ii,ee)
subroutine crystallite_integrateStateAdaptiveEuler()
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
@ -2123,11 +2096,6 @@ subroutine crystallite_integrateStateAdaptiveEuler(gg,ii,ee)
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
@ -2147,20 +2115,13 @@ subroutine crystallite_integrateStateAdaptiveEuler(gg,ii,ee)
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
singleRun = (eIter(1) == eIter(2) .and. iIter(1,e) == iIter(2,e))
stateResiduum = 0.0_pReal
@ -2407,7 +2368,7 @@ end subroutine crystallite_integrateStateAdaptiveEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateEuler(gg,ii,ee)
subroutine crystallite_integrateStateEuler()
use numerics, only: numerics_integrationMode, &
numerics_timeSyncing
use debug, only: debug_level, &
@ -2433,10 +2394,6 @@ subroutine crystallite_integrateStateEuler(gg,ii,ee)
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
@ -2447,20 +2404,13 @@ subroutine crystallite_integrateStateEuler(gg,ii,ee)
gIter ! bounds for grain iteration
logical singleRun ! flag indicating computation for single (g,i,e) triple
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
singleRun = (eIter(1) == eIter(2) .and. iIter(1,e) == iIter(2,e))
!$OMP PARALLEL
@ -2612,7 +2562,7 @@ end subroutine crystallite_integrateStateEuler
!> @brief integrate stress, state and Temperature with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateFPI(gg,ii,ee)
subroutine crystallite_integrateStateFPI()
use debug, only: debug_e, &
debug_i, &
debug_g, &
@ -2644,10 +2594,6 @@ subroutine crystallite_integrateStateFPI(gg,ii,ee)
constitutive_aTolState
implicit none
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) NiterationState, & ! number of iterations in state loop
e, & ! element index in element loop
@ -2666,18 +2612,13 @@ subroutine crystallite_integrateStateFPI(gg,ii,ee)
tempState
logical singleRun ! flag indicating computation for single (g,i,e) triple
singleRun = present(ee) .and. present(ii) .and. present(gg)
if (singleRun) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
endif
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = (eIter(1) == eIter(2) .and. iIter(1,e) == iIter(2,e))
! --+>> PREGUESS FOR STATE <<+--

View File

@ -611,7 +611,7 @@ subroutine materialpoint_postResults(dt)
implicit none
real(pReal), intent(in) :: dt
integer(pInt) :: &
integer(pInt) :: &
thePos, &
theSize, &
myNgrains, &