task for DREAM.3D if needed

pointwise takeover should not be a problem anymore as reading in takes
no time (at least in comparison to addGrainID)
This commit is contained in:
Martin Diehl 2019-02-23 22:14:55 +01:00
parent a8e8b75cc0
commit 9fa2553af4
1 changed files with 0 additions and 176 deletions

View File

@ -1,176 +0,0 @@
#!/usr/bin/env python3
# -*- coding: UTF-8 no BOM -*-
import os,sys,copy
import numpy as np
import damask
from optparse import OptionParser
from scipy import spatial
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """
Add grain index based on similiarity of crystal lattice orientation.
""", version = scriptID)
parser.add_option('-r',
'--radius',
dest = 'radius',
type = 'float', metavar = 'float',
help = 'search radius')
parser.add_option('-d',
'--disorientation',
dest = 'disorientation',
type = 'float', metavar = 'float',
help = 'disorientation threshold in degrees [%default]')
parser.add_option('-s',
'--symmetry',
dest = 'symmetry', type = 'choice', choices = damask.Symmetry.lattices[1:],
metavar = 'string',
help = 'crystal symmetry [%default] {{{}}} '.format(', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('-o',
'--orientation',
dest = 'quaternion',
metavar = 'string',
help = 'label of crystal orientation given as unit quaternion [%default]')
parser.add_option('-p',
'--pos', '--position',
dest = 'pos',
metavar = 'string',
help = 'label of coordinates [%default]')
parser.add_option('--quiet',
dest='verbose',
action = 'store_false',
help = 'hide status bar (useful when piping to file)')
parser.set_defaults(disorientation = 5,
verbose = True,
quaternion = 'orientation',
symmetry = damask.Symmetry.lattices[-1],
pos = 'pos',
)
(options, filenames) = parser.parse_args()
if options.radius is None:
parser.error('no radius specified.')
cos_disorientation = np.cos(np.radians(options.disorientation/2.)) # cos of half the disorientation angle
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try: table = damask.ASCIItable(name = name,
buffered = False)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header -------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks -----------------------------------------
errors = []
remarks = []
if not 3 >= table.label_dimension(options.pos) >= 1:
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.pos))
if not np.all(table.label_dimension(options.quaternion) == 4):
errors.append('input "{}" does not have dimension 4.'.format(options.quaternion))
else: column = table.label_index(options.quaternion)
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.labels_append('grainID_{}@{:g}'.format(options.quaternion,options.disorientation)) # report orientation source and disorientation
table.head_write()
# ------------------------------------------ build KD tree -----------------------------------------
table.data_readArray(options.pos) # read position vectors
grainID = -np.ones(len(table.data),dtype=int)
Npoints = table.data.shape[0]
kdtree = spatial.KDTree(copy.deepcopy(table.data))
# ------------------------------------------ assign grain IDs --------------------------------------
orientations = [] # quaternions found for grain
memberCounts = [] # number of voxels in grain
p = 0 # point counter
g = 0 # grain counter
matchedID = -1
lastDistance = np.dot(kdtree.data[-1]-kdtree.data[0],kdtree.data[-1]-kdtree.data[0]) # (arbitrarily) use diagonal of cloud
table.data_rewind()
while table.data_read(): # read next data line of ASCII table
if options.verbose and Npoints > 100 and p%(Npoints//100) == 0: # report in 1% steps if possible and avoid modulo by zero
damask.util.progressBar(iteration=p,total=Npoints)
o = damask.Orientation(quaternion = np.array(list(map(float,table.data[column:column+4]))),
symmetry = options.symmetry).reduced()
matched = False
alreadyChecked = {}
candidates = []
bestDisorientation = damask.Quaternion([0,0,0,1]) # initialize to 180 deg rotation as worst case
for i in kdtree.query_ball_point(kdtree.data[p],options.radius): # check all neighboring points
gID = grainID[i]
if gID != -1 and gID not in alreadyChecked: # indexed point belonging to a grain not yet tested?
alreadyChecked[gID] = True # remember not to check again
disorientation = o.disorientation(orientations[gID],SST = False)[0] # compare against other orientation
if disorientation.quaternion.q > cos_disorientation: # within threshold ...
candidates.append(gID) # remember as potential candidate
if disorientation.quaternion.q >= bestDisorientation.q: # ... and better than current best?
matched = True
matchedID = gID # remember that grain
bestDisorientation = disorientation.quaternion
if matched: # did match existing grain
memberCounts[matchedID] += 1
if len(candidates) > 1: # ambiguity in grain identification?
largestGrain = sorted(candidates,key=lambda x:memberCounts[x])[-1] # find largest among potential candidate grains
matchedID = largestGrain
for c in [c for c in candidates if c != largestGrain]: # loop over smaller candidates
memberCounts[largestGrain] += memberCounts[c] # reassign member count of smaller to largest
memberCounts[c] = 0
grainID = np.where(np.in1d(grainID,candidates), largestGrain, grainID) # relabel grid points of smaller candidates as largest one
else: # no match -> new grain found
orientations += [o] # initialize with current orientation
memberCounts += [1] # start new membership counter
matchedID = g
g += 1 # increment grain counter
grainID[p] = matchedID # remember grain index assigned to point
p += 1 # increment point
grainIDs = np.where(np.array(memberCounts) > 0)[0] # identify "live" grain identifiers
packingMap = dict(zip(list(grainIDs),range(len(grainIDs)))) # map to condense into consecutive IDs
table.data_rewind()
outputAlive = True
p = 0
damask.util.progressBar(iteration=1,total=1)
while outputAlive and table.data_read(): # read next data line of ASCII table
table.data_append(1+packingMap[grainID[p]]) # add (condensed) grain ID
outputAlive = table.data_write() # output processed line
p += 1
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables