simplified FFT statements
This commit is contained in:
parent
0a89900f72
commit
9ea6d3afd7
|
@ -18,7 +18,7 @@ def curlFFT(geomdim,field):
|
|||
if n == 3: dataType = 'vector'
|
||||
elif n == 9: dataType = 'tensor'
|
||||
|
||||
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
||||
curl_fourier = np.empty(field_fourier.shape,'c16')
|
||||
|
||||
# differentiation in Fourier space
|
||||
|
@ -56,7 +56,7 @@ def curlFFT(geomdim,field):
|
|||
curl_fourier[i,j,k,2] = ( field_fourier[i,j,k,1]*xi[0]\
|
||||
-field_fourier[i,j,k,0]*xi[1]) *TWOPIIMG
|
||||
|
||||
return np.fft.fftpack.irfftn(curl_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n])
|
||||
return np.fft.irfftn(curl_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n])
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
|
@ -158,7 +158,7 @@ for name in filenames:
|
|||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
stack.append(curlFFT(size[::-1],
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||
reshape(grid[::-1].tolist()+data['shape'])))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ def divFFT(geomdim,field):
|
|||
N = grid.prod() # field size
|
||||
n = np.array(np.shape(field)[3:]).prod() # data size
|
||||
|
||||
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
||||
div_fourier = np.empty(field_fourier.shape[0:len(np.shape(field))-1],'c16') # size depents on whether tensor or vector
|
||||
|
||||
# differentiation in Fourier space
|
||||
|
@ -42,7 +42,7 @@ def divFFT(geomdim,field):
|
|||
elif n == 3: # vector, 3 -> 1
|
||||
div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG
|
||||
|
||||
return np.fft.fftpack.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n/3])
|
||||
return np.fft.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n/3])
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
|
@ -145,7 +145,7 @@ for name in filenames:
|
|||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
stack.append(divFFT(size[::-1],
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||
reshape(grid[::-1].tolist()+data['shape'])))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@ def gradFFT(geomdim,field):
|
|||
if n == 3: dataType = 'vector'
|
||||
elif n == 1: dataType = 'scalar'
|
||||
|
||||
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
||||
field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
|
||||
grad_fourier = np.empty(field_fourier.shape+(3,),'c16')
|
||||
|
||||
# differentiation in Fourier space
|
||||
|
@ -46,7 +46,7 @@ def gradFFT(geomdim,field):
|
|||
grad_fourier[i,j,k,1,:] = field_fourier[i,j,k,1]*xi *TWOPIIMG # tensor field from vector data
|
||||
grad_fourier[i,j,k,2,:] = field_fourier[i,j,k,2]*xi *TWOPIIMG
|
||||
|
||||
return np.fft.fftpack.irfftn(grad_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,3*n])
|
||||
return np.fft.irfftn(grad_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,3*n])
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
|
@ -148,7 +148,7 @@ for name in filenames:
|
|||
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
|
||||
stack.append(gradFFT(size[::-1],
|
||||
table.data[:,data['column'][i]:data['column'][i]+data['dim']].
|
||||
reshape([grid[2],grid[1],grid[0]]+data['shape'])))
|
||||
reshape(grid[::-1].tolist()+data['shape'])))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
|
|
Loading…
Reference in New Issue