simplified FFT statements

This commit is contained in:
Martin Diehl 2016-06-29 10:58:15 +02:00
parent 0a89900f72
commit 9ea6d3afd7
3 changed files with 9 additions and 9 deletions

View File

@ -18,7 +18,7 @@ def curlFFT(geomdim,field):
if n == 3: dataType = 'vector' if n == 3: dataType = 'vector'
elif n == 9: dataType = 'tensor' elif n == 9: dataType = 'tensor'
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2),s=shapeFFT) field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
curl_fourier = np.empty(field_fourier.shape,'c16') curl_fourier = np.empty(field_fourier.shape,'c16')
# differentiation in Fourier space # differentiation in Fourier space
@ -56,7 +56,7 @@ def curlFFT(geomdim,field):
curl_fourier[i,j,k,2] = ( field_fourier[i,j,k,1]*xi[0]\ curl_fourier[i,j,k,2] = ( field_fourier[i,j,k,1]*xi[0]\
-field_fourier[i,j,k,0]*xi[1]) *TWOPIIMG -field_fourier[i,j,k,0]*xi[1]) *TWOPIIMG
return np.fft.fftpack.irfftn(curl_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n]) return np.fft.irfftn(curl_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n])
# -------------------------------------------------------------------- # --------------------------------------------------------------------
@ -158,7 +158,7 @@ for name in filenames:
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
stack.append(curlFFT(size[::-1], stack.append(curlFFT(size[::-1],
table.data[:,data['column'][i]:data['column'][i]+data['dim']]. table.data[:,data['column'][i]:data['column'][i]+data['dim']].
reshape([grid[2],grid[1],grid[0]]+data['shape']))) reshape(grid[::-1].tolist()+data['shape'])))
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output result -----------------------------------------

View File

@ -15,7 +15,7 @@ def divFFT(geomdim,field):
N = grid.prod() # field size N = grid.prod() # field size
n = np.array(np.shape(field)[3:]).prod() # data size n = np.array(np.shape(field)[3:]).prod() # data size
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2),s=shapeFFT) field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
div_fourier = np.empty(field_fourier.shape[0:len(np.shape(field))-1],'c16') # size depents on whether tensor or vector div_fourier = np.empty(field_fourier.shape[0:len(np.shape(field))-1],'c16') # size depents on whether tensor or vector
# differentiation in Fourier space # differentiation in Fourier space
@ -42,7 +42,7 @@ def divFFT(geomdim,field):
elif n == 3: # vector, 3 -> 1 elif n == 3: # vector, 3 -> 1
div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG
return np.fft.fftpack.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n/3]) return np.fft.irfftn(div_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n/3])
# -------------------------------------------------------------------- # --------------------------------------------------------------------
@ -145,7 +145,7 @@ for name in filenames:
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
stack.append(divFFT(size[::-1], stack.append(divFFT(size[::-1],
table.data[:,data['column'][i]:data['column'][i]+data['dim']]. table.data[:,data['column'][i]:data['column'][i]+data['dim']].
reshape([grid[2],grid[1],grid[0]]+data['shape']))) reshape(grid[::-1].tolist()+data['shape'])))
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output result -----------------------------------------

View File

@ -18,7 +18,7 @@ def gradFFT(geomdim,field):
if n == 3: dataType = 'vector' if n == 3: dataType = 'vector'
elif n == 1: dataType = 'scalar' elif n == 1: dataType = 'scalar'
field_fourier = np.fft.fftpack.rfftn(field,axes=(0,1,2),s=shapeFFT) field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT)
grad_fourier = np.empty(field_fourier.shape+(3,),'c16') grad_fourier = np.empty(field_fourier.shape+(3,),'c16')
# differentiation in Fourier space # differentiation in Fourier space
@ -46,7 +46,7 @@ def gradFFT(geomdim,field):
grad_fourier[i,j,k,1,:] = field_fourier[i,j,k,1]*xi *TWOPIIMG # tensor field from vector data grad_fourier[i,j,k,1,:] = field_fourier[i,j,k,1]*xi *TWOPIIMG # tensor field from vector data
grad_fourier[i,j,k,2,:] = field_fourier[i,j,k,2]*xi *TWOPIIMG grad_fourier[i,j,k,2,:] = field_fourier[i,j,k,2]*xi *TWOPIIMG
return np.fft.fftpack.irfftn(grad_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,3*n]) return np.fft.irfftn(grad_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,3*n])
# -------------------------------------------------------------------- # --------------------------------------------------------------------
@ -148,7 +148,7 @@ for name in filenames:
# we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation
stack.append(gradFFT(size[::-1], stack.append(gradFFT(size[::-1],
table.data[:,data['column'][i]:data['column'][i]+data['dim']]. table.data[:,data['column'][i]:data['column'][i]+data['dim']].
reshape([grid[2],grid[1],grid[0]]+data['shape']))) reshape(grid[::-1].tolist()+data['shape'])))
# ------------------------------------------ output result ----------------------------------------- # ------------------------------------------ output result -----------------------------------------