Merge branch 'development' into less-shell-scripts
This commit is contained in:
commit
9e79935add
|
@ -203,7 +203,6 @@ Post_OrientationConversion:
|
|||
stage: postprocessing
|
||||
script:
|
||||
- OrientationConversion/test.py
|
||||
- OrientationConversion/test2.py
|
||||
except:
|
||||
- master
|
||||
- release
|
||||
|
|
|
@ -33,7 +33,7 @@ for filename in options.filenames:
|
|||
results = damask.Result(filename)
|
||||
|
||||
if not results.structured: continue
|
||||
coords = damask.grid_filters.cell_coord0(results.grid,results.size,results.origin)
|
||||
coords = damask.grid_filters.cell_coord0(results.grid,results.size,results.origin).reshape(-1,3,order='F')
|
||||
|
||||
N_digits = int(np.floor(np.log10(int(results.increments[-1][3:]))))+1
|
||||
N_digits = 5 # hack to keep test intact
|
||||
|
|
|
@ -16,8 +16,8 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
def volTetrahedron(coords):
|
||||
"""
|
||||
Return the volume of the tetrahedron with given vertices or sides.
|
||||
|
||||
Ifvertices are given they must be in a NumPy array with shape (4,3): the
|
||||
|
||||
If vertices are given they must be in a NumPy array with shape (4,3): the
|
||||
position vectors of the 4 vertices in 3 dimensions; if the six sides are
|
||||
given, they must be an array of length 6. If both are given, the sides
|
||||
will be used in the calculation.
|
||||
|
@ -62,19 +62,18 @@ def volTetrahedron(coords):
|
|||
def volumeMismatch(size,F,nodes):
|
||||
"""
|
||||
Calculates the volume mismatch.
|
||||
|
||||
volume mismatch is defined as the difference between volume of reconstructed
|
||||
|
||||
volume mismatch is defined as the difference between volume of reconstructed
|
||||
(compatible) cube and determinant of deformation gradient at Fourier point.
|
||||
"""
|
||||
coords = np.empty([8,3])
|
||||
vMismatch = np.empty(grid[::-1])
|
||||
volInitial = size.prod()/grid.prod()
|
||||
|
||||
vMismatch = np.empty(F.shape[:3])
|
||||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
# calculate actual volume and volume resulting from deformation gradient
|
||||
for k in range(grid[2]):
|
||||
for k in range(grid[0]):
|
||||
for j in range(grid[1]):
|
||||
for i in range(grid[0]):
|
||||
for i in range(grid[2]):
|
||||
coords[0,0:3] = nodes[k, j, i ,0:3]
|
||||
coords[1,0:3] = nodes[k ,j, i+1,0:3]
|
||||
coords[2,0:3] = nodes[k ,j+1,i+1,0:3]
|
||||
|
@ -91,47 +90,45 @@ def volumeMismatch(size,F,nodes):
|
|||
+ abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[5,0:3]])) \
|
||||
+ abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[0,0:3]]))) \
|
||||
/np.linalg.det(F[k,j,i,0:3,0:3])
|
||||
return vMismatch/volInitial
|
||||
|
||||
return vMismatch/(size.prod()/grid.prod())
|
||||
|
||||
|
||||
def shapeMismatch(size,F,nodes,centres):
|
||||
"""
|
||||
Routine to calculate the shape mismatch.
|
||||
|
||||
|
||||
shape mismatch is defined as difference between the vectors from the central point to
|
||||
the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
|
||||
the initial volume element with the current deformation gradient.
|
||||
"""
|
||||
coordsInitial = np.empty([8,3])
|
||||
sMismatch = np.empty(grid[::-1])
|
||||
|
||||
sMismatch = np.empty(F.shape[:3])
|
||||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
# initial positions
|
||||
coordsInitial[0,0:3] = [-size[0]/grid[0],-size[1]/grid[1],-size[2]/grid[2]]
|
||||
coordsInitial[1,0:3] = [+size[0]/grid[0],-size[1]/grid[1],-size[2]/grid[2]]
|
||||
coordsInitial[2,0:3] = [+size[0]/grid[0],+size[1]/grid[1],-size[2]/grid[2]]
|
||||
coordsInitial[3,0:3] = [-size[0]/grid[0],+size[1]/grid[1],-size[2]/grid[2]]
|
||||
coordsInitial[4,0:3] = [-size[0]/grid[0],-size[1]/grid[1],+size[2]/grid[2]]
|
||||
coordsInitial[5,0:3] = [+size[0]/grid[0],-size[1]/grid[1],+size[2]/grid[2]]
|
||||
coordsInitial[6,0:3] = [+size[0]/grid[0],+size[1]/grid[1],+size[2]/grid[2]]
|
||||
coordsInitial[7,0:3] = [-size[0]/grid[0],+size[1]/grid[1],+size[2]/grid[2]]
|
||||
coordsInitial = coordsInitial/2.0
|
||||
|
||||
delta = size/grid*.5
|
||||
coordsInitial = np.vstack((delta * np.array((-1,-1,-1)),
|
||||
delta * np.array((+1,-1,-1)),
|
||||
delta * np.array((+1,+1,-1)),
|
||||
delta * np.array((-1,+1,-1)),
|
||||
delta * np.array((-1,-1,+1)),
|
||||
delta * np.array((+1,-1,+1)),
|
||||
delta * np.array((+1,+1,+1)),
|
||||
delta * np.array((-1,+1,+1))))
|
||||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
# compare deformed original and deformed positions to actual positions
|
||||
for k in range(grid[2]):
|
||||
for k in range(grid[0]):
|
||||
for j in range(grid[1]):
|
||||
for i in range(grid[0]):
|
||||
for i in range(grid[2]):
|
||||
sMismatch[k,j,i] = \
|
||||
+ np.linalg.norm(nodes[k, j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[0,0:3]))\
|
||||
+ np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\
|
||||
+ np.linalg.norm(nodes[k, j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[2,0:3]))\
|
||||
+ np.linalg.norm(nodes[k+1,j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\
|
||||
+ np.linalg.norm(nodes[k+1,j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[2,0:3]))\
|
||||
+ np.linalg.norm(nodes[k, j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[3,0:3]))\
|
||||
+ np.linalg.norm(nodes[k+1,j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[4,0:3]))\
|
||||
+ np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[4,0:3]))\
|
||||
+ np.linalg.norm(nodes[k+1,j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[5,0:3]))\
|
||||
+ np.linalg.norm(nodes[k+1,j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[6,0:3]))\
|
||||
+ np.linalg.norm(nodes[k+1,j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[7,0:3]))
|
||||
+ np.linalg.norm(nodes[k ,j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[7,0:3]))
|
||||
return sMismatch
|
||||
|
||||
|
||||
|
@ -174,24 +171,24 @@ if filenames == []: filenames = [None]
|
|||
|
||||
for name in filenames:
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos))
|
||||
|
||||
F = table.get(options.defgrad).reshape(grid[2],grid[1],grid[0],3,3)
|
||||
F = table.get(options.defgrad).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3))
|
||||
nodes = damask.grid_filters.node_coord(size,F)
|
||||
|
||||
|
||||
if options.shape:
|
||||
centers = damask.grid_filters.cell_coord(size,F)
|
||||
shapeMismatch = shapeMismatch( size,table.get(options.defgrad).reshape(grid[2],grid[1],grid[0],3,3),nodes,centers)
|
||||
shapeMismatch = shapeMismatch(size,F,nodes,centers)
|
||||
table.add('shapeMismatch(({}))'.format(options.defgrad),
|
||||
shapeMismatch.reshape(-1,1),
|
||||
shapeMismatch.reshape(-1,1,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
|
||||
if options.volume:
|
||||
volumeMismatch = volumeMismatch(size,table.get(options.defgrad).reshape(grid[2],grid[1],grid[0],3,3),nodes)
|
||||
volumeMismatch = volumeMismatch(size,F,nodes)
|
||||
table.add('volMismatch(({}))'.format(options.defgrad),
|
||||
volumeMismatch.reshape(-1,1),
|
||||
volumeMismatch.reshape(-1,1,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -49,9 +49,10 @@ for name in filenames:
|
|||
for label in options.labels:
|
||||
field = table.get(label)
|
||||
shape = (3,) if np.prod(field.shape)//np.prod(grid) == 3 else (3,3) # vector or tensor
|
||||
field = field.reshape(np.append(grid[::-1],shape))
|
||||
field = field.reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+shape)
|
||||
curl = damask.grid_filters.curl(size,field)
|
||||
table.add('curlFFT({})'.format(label),
|
||||
damask.grid_filters.curl(size[::-1],field).reshape(-1,np.prod(shape)),
|
||||
curl.reshape(tuple(grid)+(-1,)).reshape(-1,np.prod(shape),order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -5,8 +5,6 @@ import sys
|
|||
from io import StringIO
|
||||
from optparse import OptionParser
|
||||
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
|
||||
|
||||
|
@ -51,23 +49,23 @@ for name in filenames:
|
|||
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
grid,size,origin = damask.grid_filters.cell_coord0_gridSizeOrigin(table.get(options.pos))
|
||||
|
||||
F = table.get(options.f).reshape(np.append(grid[::-1],(3,3)))
|
||||
|
||||
F = table.get(options.f).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3))
|
||||
if options.nodal:
|
||||
table = damask.Table(damask.grid_filters.node_coord0(grid[::-1],size[::-1]).reshape(-1,3),
|
||||
table = damask.Table(damask.grid_filters.node_coord0(grid,size).reshape(-1,3,order='F'),
|
||||
{'pos':(3,)})
|
||||
table.add('avg({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.node_displacement_avg(size[::-1],F).reshape(-1,3),
|
||||
damask.grid_filters.node_displacement_avg(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
table.add('fluct({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.node_displacement_fluct(size[::-1],F).reshape(-1,3),
|
||||
damask.grid_filters.node_displacement_fluct(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
table.to_ASCII(sys.stdout if name is None else os.path.splitext(name)[0]+'_nodal.txt')
|
||||
else:
|
||||
table.add('avg({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.cell_displacement_avg(size[::-1],F).reshape(-1,3),
|
||||
damask.grid_filters.cell_displacement_avg(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
table.add('fluct({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.cell_displacement_fluct(size[::-1],F).reshape(-1,3),
|
||||
damask.grid_filters.cell_displacement_fluct(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -49,9 +49,10 @@ for name in filenames:
|
|||
for label in options.labels:
|
||||
field = table.get(label)
|
||||
shape = (3,) if np.prod(field.shape)//np.prod(grid) == 3 else (3,3) # vector or tensor
|
||||
field = field.reshape(np.append(grid[::-1],shape))
|
||||
field = field.reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+shape)
|
||||
div = damask.grid_filters.divergence(size,field)
|
||||
table.add('divFFT({})'.format(label),
|
||||
damask.grid_filters.divergence(size[::-1],field).reshape(-1,np.prod(shape)//3),
|
||||
div.reshape(tuple(grid)+(-1,)).reshape(-1,np.prod(shape)//3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -49,9 +49,10 @@ for name in filenames:
|
|||
for label in options.labels:
|
||||
field = table.get(label)
|
||||
shape = (1,) if np.prod(field.shape)//np.prod(grid) == 1 else (3,) # scalar or vector
|
||||
field = field.reshape(np.append(grid[::-1],shape))
|
||||
field = field.reshape(tuple(grid)+(-1,),order='F')
|
||||
grad = damask.grid_filters.gradient(size,field)
|
||||
table.add('gradFFT({})'.format(label),
|
||||
damask.grid_filters.gradient(size[::-1],field).reshape(-1,np.prod(shape)*3),
|
||||
grad.reshape(tuple(grid)+(-1,)).reshape(-1,np.prod(shape)*3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))
|
||||
|
||||
|
||||
table.to_ASCII(sys.stdout if name is None else name)
|
||||
|
|
|
@ -172,7 +172,7 @@ for name in filenames:
|
|||
|
||||
elif inputtype == 'matrix':
|
||||
d = representations['matrix'][1]
|
||||
o = damask.Rotation.fromMatrix(list(map(float,table.data[column:column+d])))
|
||||
o = damask.Rotation.fromMatrix(np.array(list(map(float,table.data[column:column+d]))).reshape(3,3))
|
||||
|
||||
elif inputtype == 'frame':
|
||||
M = np.array(list(map(float,table.data[column[0]:column[0]+3] + \
|
||||
|
|
|
@ -214,7 +214,7 @@ for name in filenames:
|
|||
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
o = damask.Rotation(list(map(float,table.data[column:column+4])))
|
||||
o = damask.Rotation(np.array(list(map(float,table.data[column:column+4]))))
|
||||
|
||||
table.data_append( np.abs( np.sum(slip_direction * (o * force) ,axis=1) \
|
||||
* np.sum(slip_normal * (o * normal),axis=1)))
|
||||
|
|
|
@ -61,7 +61,7 @@ if any(shift != 0): prefix += 'shift{:+}{:+}{:+}_'.format(*shift)
|
|||
|
||||
for name in filenames:
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
|
||||
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
|
||||
if (options.grid is None or options.size is None):
|
||||
|
@ -87,11 +87,11 @@ for name in filenames:
|
|||
origin = list(-(packing//2)) + [0])\
|
||||
[::packing[0],::packing[1],::packing[2],:].reshape((packedGrid.prod(),-1),order = 'F')
|
||||
|
||||
|
||||
|
||||
table = damask.Table(averagedDown,table.shapes,table.comments)
|
||||
|
||||
coords = damask.grid_filters.cell_coord0(packedGrid,size,shift/packedGrid*size+origin)
|
||||
table.set(options.pos, coords.reshape(-1,3))
|
||||
table.set(options.pos, coords.reshape(-1,3,order='F'))
|
||||
|
||||
|
||||
outname = os.path.join(os.path.dirname(name),prefix+os.path.basename(name))
|
||||
|
|
|
@ -59,13 +59,13 @@ for name in filenames:
|
|||
packing = np.array(options.packing,'i')
|
||||
outSize = grid*packing
|
||||
|
||||
data = table.data.values.reshape(tuple(grid)+(-1,))
|
||||
blownUp = ndimage.interpolation.zoom(data,tuple(packing)+(1,),order=0,mode='nearest').reshape(outSize.prod(),-1)
|
||||
data = table.data.values.reshape(tuple(grid)+(-1,),order='F')
|
||||
blownUp = ndimage.interpolation.zoom(data,tuple(packing)+(1,),order=0,mode='nearest').reshape(outSize.prod(),-1,order='F')
|
||||
|
||||
table = damask.Table(blownUp,table.shapes,table.comments)
|
||||
|
||||
coords = damask.grid_filters.cell_coord0(outSize,size,origin)
|
||||
table.set(options.pos,coords.reshape(-1,3))
|
||||
table.set(options.pos,coords.reshape(-1,3,order='F'))
|
||||
table.set('elem',np.arange(1,outSize.prod()+1))
|
||||
|
||||
outname = os.path.join(os.path.dirname(name),prefix+os.path.basename(name))
|
||||
|
|
|
@ -24,22 +24,22 @@ def findClosestSeed(seeds, weights, point):
|
|||
def Laguerre_tessellation(grid, size, seeds, weights, origin = np.zeros(3), periodic = True, cpus = 2):
|
||||
|
||||
if periodic:
|
||||
weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
||||
weights_p = np.tile(weights.squeeze(),27) # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
||||
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
|
||||
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
|
||||
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
|
||||
coords = damask.grid_filters.cell_coord0(grid*3,size*3,-origin-size).reshape(-1,3,order='F')
|
||||
coords = damask.grid_filters.cell_coord0(grid*3,size*3,-origin-size).reshape(-1,3)
|
||||
else:
|
||||
weights_p = weights.flatten()
|
||||
weights_p = weights.squeeze()
|
||||
seeds_p = seeds
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3)
|
||||
|
||||
if cpus > 1:
|
||||
pool = multiprocessing.Pool(processes = cpus)
|
||||
result = pool.map_async(partial(findClosestSeed,seeds_p,weights_p), [coord for coord in coords])
|
||||
pool.close()
|
||||
pool.join()
|
||||
closest_seed = np.array(result.get())
|
||||
closest_seed = np.array(result.get()).reshape(-1,3)
|
||||
else:
|
||||
closest_seed= np.array([findClosestSeed(seeds_p,weights_p,coord) for coord in coords])
|
||||
|
||||
|
@ -52,7 +52,7 @@ def Laguerre_tessellation(grid, size, seeds, weights, origin = np.zeros(3), peri
|
|||
|
||||
def Voronoi_tessellation(grid, size, seeds, origin = np.zeros(3), periodic = True):
|
||||
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3,order='F')
|
||||
coords = damask.grid_filters.cell_coord0(grid,size,-origin).reshape(-1,3)
|
||||
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
|
||||
devNull,closest_seed = KDTree.query(coords)
|
||||
|
||||
|
|
|
@ -45,7 +45,7 @@ options.blacklist = [int(i) for i in options.blacklist]
|
|||
|
||||
for name in filenames:
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
|
||||
geom = damask.Geom.from_file(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
microstructure = geom.get_microstructure().reshape((-1,1),order='F')
|
||||
|
||||
|
@ -53,9 +53,9 @@ for name in filenames:
|
|||
np.full(geom.grid.prod(),True,dtype=bool),
|
||||
np.in1d(microstructure,options.blacklist,invert=True) if options.blacklist else \
|
||||
np.full(geom.grid.prod(),True,dtype=bool))
|
||||
|
||||
seeds = damask.grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3)
|
||||
|
||||
|
||||
seeds = damask.grid_filters.cell_coord0(geom.grid,geom.size).reshape(-1,3,order='F')
|
||||
|
||||
comments = geom.comments \
|
||||
+ [scriptID + ' ' + ' '.join(sys.argv[1:]),
|
||||
'grid\ta {}\tb {}\tc {}'.format(*geom.grid),
|
||||
|
|
|
@ -128,7 +128,7 @@ for name in filenames:
|
|||
|
||||
|
||||
if not options.selective:
|
||||
coords = damask.grid_filters.cell_coord0(grid,size).reshape(-1,3)
|
||||
coords = damask.grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
|
||||
seeds = coords[np.random.choice(np.prod(grid), options.N, replace=False)] \
|
||||
+ np.broadcast_to(size/grid,(options.N,3))*(np.random.rand(options.N,3)*.5-.25) # wobble without leaving grid
|
||||
else:
|
||||
|
|
|
@ -1,2 +1,5 @@
|
|||
[run]
|
||||
omit = tests/*
|
||||
damask/_asciitable.py
|
||||
damask/_test.py
|
||||
damask/config/*
|
||||
|
|
|
@ -322,11 +322,10 @@ class Geom:
|
|||
if i != grid.prod():
|
||||
raise TypeError('Invalid file: expected {} entries, found {}'.format(grid.prod(),i))
|
||||
|
||||
microstructure = microstructure.reshape(grid,order='F')
|
||||
if not np.any(np.mod(microstructure.flatten(),1) != 0.0): # no float present
|
||||
if not np.any(np.mod(microstructure,1) != 0.0): # no float present
|
||||
microstructure = microstructure.astype('int')
|
||||
|
||||
return Geom(microstructure.reshape(grid),size,origin,homogenization,comments)
|
||||
return Geom(microstructure.reshape(grid,order='F'),size,origin,homogenization,comments)
|
||||
|
||||
|
||||
@staticmethod
|
||||
|
@ -352,16 +351,15 @@ class Geom:
|
|||
|
||||
"""
|
||||
if periodic:
|
||||
weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
||||
weights_p = np.tile(weights,27) # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
||||
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
|
||||
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
|
||||
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
|
||||
coords = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3,order='F')
|
||||
|
||||
coords = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3)
|
||||
else:
|
||||
weights_p = weights.flatten()
|
||||
weights_p = weights
|
||||
seeds_p = seeds
|
||||
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
|
||||
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
|
||||
|
||||
pool = multiprocessing.Pool(processes = int(Environment().options['DAMASK_NUM_THREADS']))
|
||||
result = pool.map_async(partial(Geom._find_closest_seed,seeds_p,weights_p), [coord for coord in coords])
|
||||
|
@ -396,7 +394,7 @@ class Geom:
|
|||
perform a periodic tessellation. Defaults to True.
|
||||
|
||||
"""
|
||||
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F')
|
||||
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
|
||||
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
|
||||
devNull,microstructure = KDTree.query(coords)
|
||||
|
||||
|
|
|
@ -38,6 +38,9 @@ class Orientation:
|
|||
else:
|
||||
self.rotation = Rotation.fromQuaternion(rotation) # assume quaternion
|
||||
|
||||
if self.rotation.quaternion.shape != (4,):
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
|
||||
def disorientation(self,
|
||||
other,
|
||||
SST = True,
|
||||
|
|
|
@ -111,7 +111,7 @@ class Result:
|
|||
select from 'set', 'add', and 'del'
|
||||
what : str
|
||||
attribute to change (must be from self.selection)
|
||||
datasets : list of str or Boolean
|
||||
datasets : list of str or bool
|
||||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
|
||||
|
@ -203,7 +203,7 @@ class Result:
|
|||
----------
|
||||
what : str
|
||||
attribute to change (must be from self.selection)
|
||||
datasets : list of str or Boolean
|
||||
datasets : list of str or bool
|
||||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
|
||||
|
@ -219,7 +219,7 @@ class Result:
|
|||
----------
|
||||
what : str
|
||||
attribute to change (must be from self.selection)
|
||||
datasets : list of str or Boolean
|
||||
datasets : list of str or bool
|
||||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
|
||||
|
@ -235,7 +235,7 @@ class Result:
|
|||
----------
|
||||
what : str
|
||||
attribute to change (must be from self.selection)
|
||||
datasets : list of str or Boolean
|
||||
datasets : list of str or bool
|
||||
name of datasets as list, supports ? and * wildcards.
|
||||
True is equivalent to [*], False is equivalent to []
|
||||
|
||||
|
@ -262,10 +262,10 @@ class Result:
|
|||
datasets : iterable or str
|
||||
component : int
|
||||
homogenization component to consider for constituent data
|
||||
tagged : Boolean
|
||||
tagged : bool
|
||||
tag Table.column name with '#component'
|
||||
defaults to False
|
||||
split : Boolean
|
||||
split : bool
|
||||
split Table by increment and return dictionary of Tables
|
||||
defaults to True
|
||||
|
||||
|
@ -326,7 +326,7 @@ class Result:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
datasets : iterable or str or Boolean
|
||||
datasets : iterable or str or bool
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
@ -460,7 +460,7 @@ class Result:
|
|||
def cell_coordinates(self):
|
||||
"""Return initial coordinates of the cell centers."""
|
||||
if self.structured:
|
||||
return grid_filters.cell_coord0(self.grid,self.size,self.origin).reshape(-1,3)
|
||||
return grid_filters.cell_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F')
|
||||
else:
|
||||
with h5py.File(self.fname,'r') as f:
|
||||
return f['geometry/x_c'][()]
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import numpy as np
|
||||
|
||||
from ._Lambert import ball_to_cube, cube_to_ball
|
||||
from . import mechanics
|
||||
|
||||
_P = -1
|
||||
|
||||
|
@ -61,6 +62,8 @@ class Rotation:
|
|||
|
||||
def __repr__(self):
|
||||
"""Orientation displayed as unit quaternion, rotation matrix, and Bunge-Euler angles."""
|
||||
if self.quaternion.shape != (4,):
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
return '\n'.join([
|
||||
'Quaternion: (real={:.3f}, imag=<{:+.3f}, {:+.3f}, {:+.3f}>)'.format(*(self.quaternion)),
|
||||
'Matrix:\n{}'.format(self.asMatrix()),
|
||||
|
@ -83,6 +86,8 @@ class Rotation:
|
|||
considere rotation of (3,3,3,3)-matrix
|
||||
|
||||
"""
|
||||
if self.quaternion.shape != (4,):
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
if isinstance(other, Rotation): # rotate a rotation
|
||||
self_q = self.quaternion[0]
|
||||
self_p = self.quaternion[1:]
|
||||
|
@ -107,7 +112,7 @@ class Rotation:
|
|||
elif other.shape == (3,3,): # rotate a single (3x3)-matrix
|
||||
return np.dot(self.asMatrix(),np.dot(other,self.asMatrix().T))
|
||||
elif other.shape == (3,3,3,3,):
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError('Support for rotation of 4th order tensors missing')
|
||||
else:
|
||||
return NotImplemented
|
||||
else:
|
||||
|
@ -116,7 +121,7 @@ class Rotation:
|
|||
|
||||
def inverse(self):
|
||||
"""In-place inverse rotation/backward rotation."""
|
||||
self.quaternion[1:] *= -1
|
||||
self.quaternion[...,1:] *= -1
|
||||
return self
|
||||
|
||||
def inversed(self):
|
||||
|
@ -125,12 +130,12 @@ class Rotation:
|
|||
|
||||
|
||||
def standardize(self):
|
||||
"""In-place quaternion representation with positive q."""
|
||||
if self.quaternion[0] < 0.0: self.quaternion*=-1
|
||||
"""In-place quaternion representation with positive real part."""
|
||||
self.quaternion[self.quaternion[...,0] < 0.0] *= -1
|
||||
return self
|
||||
|
||||
def standardized(self):
|
||||
"""Quaternion representation with positive q."""
|
||||
"""Quaternion representation with positive real part."""
|
||||
return self.copy().standardize()
|
||||
|
||||
|
||||
|
@ -157,15 +162,17 @@ class Rotation:
|
|||
Rotation from which the average is rotated.
|
||||
|
||||
"""
|
||||
if self.quaternion.shape != (4,) or other.quaternion.shape != (4,):
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
return Rotation.fromAverage([self,other])
|
||||
|
||||
|
||||
################################################################################################
|
||||
# convert to different orientation representations (numpy arrays)
|
||||
|
||||
def asQuaternion(self):
|
||||
def as_quaternion(self):
|
||||
"""
|
||||
Unit quaternion [q, p_1, p_2, p_3] unless quaternion == True: damask.quaternion object.
|
||||
Unit quaternion [q, p_1, p_2, p_3].
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
@ -175,8 +182,8 @@ class Rotation:
|
|||
"""
|
||||
return self.quaternion
|
||||
|
||||
def asEulers(self,
|
||||
degrees = False):
|
||||
def as_Eulers(self,
|
||||
degrees = False):
|
||||
"""
|
||||
Bunge-Euler angles: (φ_1, ϕ, φ_2).
|
||||
|
||||
|
@ -190,9 +197,9 @@ class Rotation:
|
|||
if degrees: eu = np.degrees(eu)
|
||||
return eu
|
||||
|
||||
def asAxisAngle(self,
|
||||
degrees = False,
|
||||
pair = False):
|
||||
def as_axis_angle(self,
|
||||
degrees = False,
|
||||
pair = False):
|
||||
"""
|
||||
Axis angle representation [n_1, n_2, n_3, ω] unless pair == True: ([n_1, n_2, n_3], ω).
|
||||
|
||||
|
@ -205,15 +212,15 @@ class Rotation:
|
|||
|
||||
"""
|
||||
ax = Rotation.qu2ax(self.quaternion)
|
||||
if degrees: ax[3] = np.degrees(ax[3])
|
||||
return (ax[:3],ax[3]) if pair else ax
|
||||
if degrees: ax[...,3] = np.degrees(ax[...,3])
|
||||
return (ax[...,:3],ax[...,3]) if pair else ax
|
||||
|
||||
def asMatrix(self):
|
||||
def as_matrix(self):
|
||||
"""Rotation matrix."""
|
||||
return Rotation.qu2om(self.quaternion)
|
||||
|
||||
def asRodrigues(self,
|
||||
vector = False):
|
||||
def as_Rodrigues(self,
|
||||
vector = False):
|
||||
"""
|
||||
Rodrigues-Frank vector representation [n_1, n_2, n_3, tan(ω/2)] unless vector == True: [n_1, n_2, n_3] * tan(ω/2).
|
||||
|
||||
|
@ -224,9 +231,9 @@ class Rotation:
|
|||
|
||||
"""
|
||||
ro = Rotation.qu2ro(self.quaternion)
|
||||
return ro[:3]*ro[3] if vector else ro
|
||||
return ro[...,:3]*ro[...,3] if vector else ro
|
||||
|
||||
def asHomochoric(self):
|
||||
def as_homochoric(self):
|
||||
"""Homochoric vector: (h_1, h_2, h_3)."""
|
||||
return Rotation.qu2ho(self.quaternion)
|
||||
|
||||
|
@ -234,7 +241,7 @@ class Rotation:
|
|||
"""Cubochoric vector: (c_1, c_2, c_3)."""
|
||||
return Rotation.qu2cu(self.quaternion)
|
||||
|
||||
def asM(self):
|
||||
def M(self): # ToDo not sure about the name: as_M or M? we do not have a from_M
|
||||
"""
|
||||
Intermediate representation supporting quaternion averaging.
|
||||
|
||||
|
@ -244,114 +251,133 @@ class Rotation:
|
|||
https://doi.org/10.2514/1.28949
|
||||
|
||||
"""
|
||||
return np.outer(self.quaternion,self.quaternion)
|
||||
return np.einsum('...i,...j',self.quaternion,self.quaternion)
|
||||
|
||||
# for compatibility (old names do not follow convention)
|
||||
asM = M
|
||||
asQuaternion = as_quaternion
|
||||
asEulers = as_Eulers
|
||||
asAxisAngle = as_axis_angle
|
||||
asMatrix = as_matrix
|
||||
asRodrigues = as_Rodrigues
|
||||
asHomochoric = as_homochoric
|
||||
|
||||
################################################################################################
|
||||
# static constructors. The input data needs to follow the convention, options allow to
|
||||
# relax these convections
|
||||
# Static constructors. The input data needs to follow the conventions, options allow to
|
||||
# relax the conventions.
|
||||
@staticmethod
|
||||
def fromQuaternion(quaternion,
|
||||
acceptHomomorph = False,
|
||||
P = -1):
|
||||
def from_quaternion(quaternion,
|
||||
acceptHomomorph = False,
|
||||
P = -1):
|
||||
|
||||
qu = quaternion if isinstance(quaternion,np.ndarray) and quaternion.dtype == np.dtype(float) \
|
||||
else np.array(quaternion,dtype=float)
|
||||
if P > 0: qu[1:4] *= -1 # convert from P=1 to P=-1
|
||||
if qu[0] < 0.0:
|
||||
if acceptHomomorph:
|
||||
qu *= -1.
|
||||
else:
|
||||
raise ValueError('Quaternion has negative first component: {}.'.format(qu[0]))
|
||||
if not np.isclose(np.linalg.norm(qu), 1.0):
|
||||
raise ValueError('Quaternion is not of unit length: {} {} {} {}.'.format(*qu))
|
||||
qu = np.array(quaternion,dtype=float)
|
||||
if qu.shape[:-2:-1] != (4,):
|
||||
raise ValueError('Invalid shape.')
|
||||
|
||||
if P > 0: qu[...,1:4] *= -1 # convert from P=1 to P=-1
|
||||
if acceptHomomorph:
|
||||
qu[qu[...,0] < 0.0] *= -1
|
||||
else:
|
||||
if np.any(qu[...,0] < 0.0):
|
||||
raise ValueError('Quaternion with negative first (real) component.')
|
||||
if not np.all(np.isclose(np.linalg.norm(qu,axis=-1), 1.0)):
|
||||
raise ValueError('Quaternion is not of unit length.')
|
||||
|
||||
return Rotation(qu)
|
||||
|
||||
@staticmethod
|
||||
def fromEulers(eulers,
|
||||
degrees = False):
|
||||
def from_Eulers(eulers,
|
||||
degrees = False):
|
||||
|
||||
eu = np.array(eulers,dtype=float)
|
||||
if eu.shape[:-2:-1] != (3,):
|
||||
raise ValueError('Invalid shape.')
|
||||
|
||||
eu = eulers if isinstance(eulers, np.ndarray) and eulers.dtype == np.dtype(float) \
|
||||
else np.array(eulers,dtype=float)
|
||||
eu = np.radians(eu) if degrees else eu
|
||||
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or eu[1] > np.pi:
|
||||
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π]: {} {} {}.'.format(*eu))
|
||||
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or np.any(eu[...,1] > np.pi): # ToDo: No separate check for PHI
|
||||
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].')
|
||||
|
||||
return Rotation(Rotation.eu2qu(eu))
|
||||
|
||||
@staticmethod
|
||||
def fromAxisAngle(angleAxis,
|
||||
degrees = False,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
def from_axis_angle(axis_angle,
|
||||
degrees = False,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
|
||||
ax = angleAxis if isinstance(angleAxis, np.ndarray) and angleAxis.dtype == np.dtype(float) \
|
||||
else np.array(angleAxis,dtype=float)
|
||||
if P > 0: ax[0:3] *= -1 # convert from P=1 to P=-1
|
||||
if degrees: ax[ 3] = np.radians(ax[3])
|
||||
if normalise: ax[0:3] /= np.linalg.norm(ax[0:3])
|
||||
if ax[3] < 0.0 or ax[3] > np.pi:
|
||||
raise ValueError('Axis angle rotation angle outside of [0..π]: {}.'.format(ax[3]))
|
||||
if not np.isclose(np.linalg.norm(ax[0:3]), 1.0):
|
||||
raise ValueError('Axis angle rotation axis is not of unit length: {} {} {}.'.format(*ax[0:3]))
|
||||
ax = np.array(axis_angle,dtype=float)
|
||||
if ax.shape[:-2:-1] != (4,):
|
||||
raise ValueError('Invalid shape.')
|
||||
|
||||
if P > 0: ax[...,0:3] *= -1 # convert from P=1 to P=-1
|
||||
if degrees: ax[..., 3] = np.radians(ax[...,3])
|
||||
if normalise: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1)
|
||||
if np.any(ax[...,3] < 0.0) or np.any(ax[...,3] > np.pi):
|
||||
raise ValueError('Axis angle rotation angle outside of [0..π].')
|
||||
if not np.all(np.isclose(np.linalg.norm(ax[...,0:3],axis=-1), 1.0)):
|
||||
raise ValueError('Axis angle rotation axis is not of unit length.')
|
||||
|
||||
return Rotation(Rotation.ax2qu(ax))
|
||||
|
||||
@staticmethod
|
||||
def fromBasis(basis,
|
||||
orthonormal = True,
|
||||
reciprocal = False,
|
||||
):
|
||||
def from_basis(basis,
|
||||
orthonormal = True,
|
||||
reciprocal = False):
|
||||
|
||||
om = np.array(basis,dtype=float)
|
||||
if om.shape[:-3:-1] != (3,3):
|
||||
raise ValueError('Invalid shape.')
|
||||
|
||||
om = basis if isinstance(basis, np.ndarray) else np.array(basis).reshape(3,3)
|
||||
if reciprocal:
|
||||
om = np.linalg.inv(om.T/np.pi) # transform reciprocal basis set
|
||||
om = np.linalg.inv(mechanics.transpose(om)/np.pi) # transform reciprocal basis set
|
||||
orthonormal = False # contains stretch
|
||||
if not orthonormal:
|
||||
(U,S,Vh) = np.linalg.svd(om) # singular value decomposition
|
||||
om = np.dot(U,Vh)
|
||||
if not np.isclose(np.linalg.det(om),1.0):
|
||||
raise ValueError('matrix is not a proper rotation: {}.'.format(om))
|
||||
if not np.isclose(np.dot(om[0],om[1]), 0.0) \
|
||||
or not np.isclose(np.dot(om[1],om[2]), 0.0) \
|
||||
or not np.isclose(np.dot(om[2],om[0]), 0.0):
|
||||
raise ValueError('matrix is not orthogonal: {}.'.format(om))
|
||||
om = np.einsum('...ij,...jl->...il',U,Vh)
|
||||
if not np.all(np.isclose(np.linalg.det(om),1.0)):
|
||||
raise ValueError('Orientation matrix has determinant ≠ 1.')
|
||||
if not np.all(np.isclose(np.einsum('...i,...i',om[...,0],om[...,1]), 0.0)) \
|
||||
or not np.all(np.isclose(np.einsum('...i,...i',om[...,1],om[...,2]), 0.0)) \
|
||||
or not np.all(np.isclose(np.einsum('...i,...i',om[...,2],om[...,0]), 0.0)):
|
||||
raise ValueError('Orientation matrix is not orthogonal.')
|
||||
|
||||
return Rotation(Rotation.om2qu(om))
|
||||
|
||||
@staticmethod
|
||||
def fromMatrix(om,
|
||||
):
|
||||
def from_matrix(om):
|
||||
|
||||
return Rotation.fromBasis(om)
|
||||
return Rotation.from_basis(om)
|
||||
|
||||
@staticmethod
|
||||
def fromRodrigues(rodrigues,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
def from_Rodrigues(rodrigues,
|
||||
normalise = False,
|
||||
P = -1):
|
||||
|
||||
ro = rodrigues if isinstance(rodrigues, np.ndarray) and rodrigues.dtype == np.dtype(float) \
|
||||
else np.array(rodrigues,dtype=float)
|
||||
if P > 0: ro[0:3] *= -1 # convert from P=1 to P=-1
|
||||
if normalise: ro[0:3] /= np.linalg.norm(ro[0:3])
|
||||
if not np.isclose(np.linalg.norm(ro[0:3]), 1.0):
|
||||
raise ValueError('Rodrigues rotation axis is not of unit length: {} {} {}.'.format(*ro[0:3]))
|
||||
if ro[3] < 0.0:
|
||||
raise ValueError('Rodrigues rotation angle not positive: {}.'.format(ro[3]))
|
||||
ro = np.array(rodrigues,dtype=float)
|
||||
if ro.shape[:-2:-1] != (4,):
|
||||
raise ValueError('Invalid shape.')
|
||||
|
||||
if P > 0: ro[...,0:3] *= -1 # convert from P=1 to P=-1
|
||||
if normalise: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1)
|
||||
if np.any(ro[...,3] < 0.0):
|
||||
raise ValueError('Rodrigues vector rotation angle not positive.')
|
||||
if not np.all(np.isclose(np.linalg.norm(ro[...,0:3],axis=-1), 1.0)):
|
||||
raise ValueError('Rodrigues vector rotation axis is not of unit length.')
|
||||
|
||||
return Rotation(Rotation.ro2qu(ro))
|
||||
|
||||
@staticmethod
|
||||
def fromHomochoric(homochoric,
|
||||
P = -1):
|
||||
def from_homochoric(homochoric,
|
||||
P = -1):
|
||||
|
||||
ho = np.array(homochoric,dtype=float)
|
||||
if ho.shape[:-2:-1] != (3,):
|
||||
raise ValueError('Invalid shape.')
|
||||
|
||||
ho = homochoric if isinstance(homochoric, np.ndarray) and homochoric.dtype == np.dtype(float) \
|
||||
else np.array(homochoric,dtype=float)
|
||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
||||
if np.linalg.norm(ho) > (3.*np.pi/4.)**(1./3.)+1e-9:
|
||||
raise ValueError('Coordinate outside of the sphere: {} {} {}.'.format(ho))
|
||||
if np.any(np.linalg.norm(ho,axis=-1) > (3.*np.pi/4.)**(1./3.)+1e-9):
|
||||
raise ValueError('Homochoric coordinate outside of the sphere.')
|
||||
|
||||
return Rotation(Rotation.ho2qu(ho))
|
||||
|
||||
|
@ -359,11 +385,12 @@ class Rotation:
|
|||
def fromCubochoric(cubochoric,
|
||||
P = -1):
|
||||
|
||||
cu = cubochoric if isinstance(cubochoric, np.ndarray) and cubochoric.dtype == np.dtype(float) \
|
||||
else np.array(cubochoric,dtype=float)
|
||||
cu = np.array(cubochoric,dtype=float)
|
||||
if cu.shape[:-2:-1] != (3,):
|
||||
raise ValueError('Invalid shape.')
|
||||
|
||||
if np.abs(np.max(cu))>np.pi**(2./3.) * 0.5+1e-9:
|
||||
raise ValueError('Coordinate outside of the cube: {} {} {}.'.format(*cu))
|
||||
raise ValueError('Cubochoric coordinate outside of the cube: {} {} {}.'.format(*cu))
|
||||
|
||||
ho = Rotation.cu2ho(cu)
|
||||
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
||||
|
@ -403,17 +430,34 @@ class Rotation:
|
|||
|
||||
return Rotation.fromQuaternion(np.real(vec.T[eig.argmax()]),acceptHomomorph = True)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def fromRandom():
|
||||
r = np.random.random(3)
|
||||
A = np.sqrt(r[2])
|
||||
B = np.sqrt(1.0-r[2])
|
||||
return Rotation(np.array([np.cos(2.0*np.pi*r[0])*A,
|
||||
np.sin(2.0*np.pi*r[1])*B,
|
||||
np.cos(2.0*np.pi*r[1])*B,
|
||||
np.sin(2.0*np.pi*r[0])*A])).standardize()
|
||||
def from_random(shape=None):
|
||||
if shape is None:
|
||||
r = np.random.random(3)
|
||||
elif hasattr(shape, '__iter__'):
|
||||
r = np.random.random(tuple(shape)+(3,))
|
||||
else:
|
||||
r = np.random.random((shape,3))
|
||||
|
||||
A = np.sqrt(r[...,2])
|
||||
B = np.sqrt(1.0-r[...,2])
|
||||
q = np.stack([np.cos(2.0*np.pi*r[...,0])*A,
|
||||
np.sin(2.0*np.pi*r[...,1])*B,
|
||||
np.cos(2.0*np.pi*r[...,1])*B,
|
||||
np.sin(2.0*np.pi*r[...,0])*A],axis=-1)
|
||||
|
||||
return Rotation(q.reshape(r.shape[:-1]+(4,)) if shape is not None else q).standardize()
|
||||
|
||||
|
||||
# for compatibility (old names do not follow convention)
|
||||
fromQuaternion = from_quaternion
|
||||
fromEulers = from_Eulers
|
||||
fromAxisAngle = from_axis_angle
|
||||
fromBasis = from_basis
|
||||
fromMatrix = from_matrix
|
||||
fromRodrigues = from_Rodrigues
|
||||
fromHomochoric = from_homochoric
|
||||
fromRandom = from_random
|
||||
|
||||
####################################################################################################
|
||||
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
|
||||
|
@ -808,12 +852,11 @@ class Rotation:
|
|||
c = np.cos(ax[3]*0.5)
|
||||
s = np.sin(ax[3]*0.5)
|
||||
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
|
||||
return qu
|
||||
else:
|
||||
c = np.cos(ax[...,3:4]*.5)
|
||||
s = np.sin(ax[...,3:4]*.5)
|
||||
qu = np.where(np.abs(ax[...,3:4])<1.e-6,[1.0, 0.0, 0.0, 0.0],np.block([c, ax[...,:3]*s]))
|
||||
return qu
|
||||
return qu
|
||||
|
||||
@staticmethod
|
||||
def ax2om(ax):
|
||||
|
@ -859,7 +902,7 @@ class Rotation:
|
|||
# 180 degree case
|
||||
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
|
||||
[np.tan(ax[3]*0.5)]
|
||||
return np.array(ro)
|
||||
ro = np.array(ro)
|
||||
else:
|
||||
ro = np.block([ax[...,:3],
|
||||
np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0),
|
||||
|
@ -867,7 +910,7 @@ class Rotation:
|
|||
np.tan(ax[...,3:4]*0.5))
|
||||
])
|
||||
ro[np.abs(ax[...,3])<1.e-6] = [.0,.0,_P,.0]
|
||||
return ro
|
||||
return ro
|
||||
|
||||
@staticmethod
|
||||
def ax2ho(ax):
|
||||
|
@ -875,11 +918,10 @@ class Rotation:
|
|||
if len(ax.shape) == 1:
|
||||
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
|
||||
ho = ax[0:3] * f
|
||||
return ho
|
||||
else:
|
||||
f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1.0/3.0)
|
||||
ho = ax[...,:3] * f
|
||||
return ho
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
def ax2cu(ax):
|
||||
|
@ -936,7 +978,6 @@ class Rotation:
|
|||
f = np.where(np.isfinite(ro[...,3:4]),2.0*np.arctan(ro[...,3:4]) -np.sin(2.0*np.arctan(ro[...,3:4])),np.pi)
|
||||
ho = np.where(np.broadcast_to(np.sum(ro[...,0:3]**2.0,axis=-1,keepdims=True) < 1.e-6,ro[...,0:3].shape),
|
||||
np.zeros(3), ro[...,0:3]* (0.75*f)**(1.0/3.0))
|
||||
|
||||
return ho
|
||||
|
||||
@staticmethod
|
||||
|
@ -1010,7 +1051,7 @@ class Rotation:
|
|||
if len(ho.shape) == 1:
|
||||
return ball_to_cube(ho)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
|
||||
|
||||
#---------- Cubochoric ----------
|
||||
|
@ -1045,4 +1086,4 @@ class Rotation:
|
|||
if len(cu.shape) == 1:
|
||||
return cube_to_ball(cu)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
|
|
|
@ -1,3 +1,17 @@
|
|||
"""
|
||||
Filters for operations on regular grids.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The grids are defined as (x,y,z,...) where x is fastest and z is slowest.
|
||||
This convention is consistent with the geom file format.
|
||||
When converting to/from a plain list (e.g. storage in ASCII table),
|
||||
the following operations are required for tensorial data:
|
||||
|
||||
D3 = D1.reshape(grid+(-1,),order='F').reshape(grid+(3,3))
|
||||
D1 = D3.reshape(grid+(-1,)).reshape(-1,9,order='F')
|
||||
|
||||
"""
|
||||
from scipy import spatial as _spatial
|
||||
import numpy as _np
|
||||
|
||||
|
@ -7,8 +21,12 @@ def _ks(size,grid,first_order=False):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
grid : numpy.ndarray of shape (3)
|
||||
number of grid points.
|
||||
first_order : bool, optional
|
||||
correction for first order derivatives, defaults to False.
|
||||
|
||||
"""
|
||||
k_sk = _np.where(_np.arange(grid[0])>grid[0]//2,_np.arange(grid[0])-grid[0],_np.arange(grid[0]))/size[0]
|
||||
|
@ -19,8 +37,7 @@ def _ks(size,grid,first_order=False):
|
|||
|
||||
k_si = _np.arange(grid[2]//2+1)/size[2]
|
||||
|
||||
kk, kj, ki = _np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij')
|
||||
return _np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
|
||||
return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1)
|
||||
|
||||
|
||||
def curl(size,field):
|
||||
|
@ -29,8 +46,10 @@ def curl(size,field):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
|
||||
periodic field of which the curl is calculated.
|
||||
|
||||
"""
|
||||
n = _np.prod(field.shape[3:])
|
||||
|
@ -53,8 +72,10 @@ def divergence(size,field):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
field : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
|
||||
periodic field of which the divergence is calculated.
|
||||
|
||||
"""
|
||||
n = _np.prod(field.shape[3:])
|
||||
|
@ -69,12 +90,14 @@ def divergence(size,field):
|
|||
|
||||
def gradient(size,field):
|
||||
"""
|
||||
Calculate gradient of a vector or scalar field in Fourier space.
|
||||
Calculate gradient of a scalar or vector field in Fourier space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
field : numpy.ndarray of shape (:,:,:,1) or (:,:,:,3)
|
||||
periodic field of which the gradient is calculated.
|
||||
|
||||
"""
|
||||
n = _np.prod(field.shape[3:])
|
||||
|
@ -93,9 +116,9 @@ def cell_coord0(grid,size,origin=_np.zeros(3)):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
grid : numpy.ndarray
|
||||
grid : numpy.ndarray of shape (3)
|
||||
number of grid points.
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
origin : numpy.ndarray, optional
|
||||
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
@ -103,7 +126,11 @@ def cell_coord0(grid,size,origin=_np.zeros(3)):
|
|||
"""
|
||||
start = origin + size/grid*.5
|
||||
end = origin + size - size/grid*.5
|
||||
return _np.mgrid[start[0]:end[0]:grid[0]*1j,start[1]:end[1]:grid[1]*1j,start[2]:end[2]:grid[2]*1j].T
|
||||
|
||||
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],grid[0]),
|
||||
_np.linspace(start[1],end[1],grid[1]),
|
||||
_np.linspace(start[2],end[2],grid[2]),indexing = 'ij'),
|
||||
axis = -1)
|
||||
|
||||
|
||||
def cell_displacement_fluct(size,F):
|
||||
|
@ -112,7 +139,7 @@ def cell_displacement_fluct(size,F):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
@ -139,14 +166,14 @@ def cell_displacement_avg(size,F):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
"""
|
||||
F_avg = _np.average(F,axis=(0,1,2))
|
||||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),cell_coord0(F.shape[:3][::-1],size))
|
||||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),cell_coord0(F.shape[:3],size))
|
||||
|
||||
|
||||
def cell_displacement(size,F):
|
||||
|
@ -155,7 +182,7 @@ def cell_displacement(size,F):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
@ -170,25 +197,25 @@ def cell_coord(size,F,origin=_np.zeros(3)):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
origin : numpy.ndarray, optional
|
||||
origin : numpy.ndarray of shape (3), optional
|
||||
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
||||
"""
|
||||
return cell_coord0(F.shape[:3][::-1],size,origin) + cell_displacement(size,F)
|
||||
return cell_coord0(F.shape[:3],size,origin) + cell_displacement(size,F)
|
||||
|
||||
|
||||
def cell_coord0_gridSizeOrigin(coord0,ordered=True):
|
||||
"""
|
||||
Return grid 'DNA', i.e. grid, size, and origin from array of cell positions.
|
||||
Return grid 'DNA', i.e. grid, size, and origin from 1D array of cell positions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
coord0 : numpy.ndarray
|
||||
array of undeformed cell coordinates.
|
||||
coord0 : numpy.ndarray of shape (:,3)
|
||||
undeformed cell coordinates.
|
||||
ordered : bool, optional
|
||||
expect coord0 data to be ordered (x fast, z slow).
|
||||
|
||||
|
@ -211,13 +238,13 @@ def cell_coord0_gridSizeOrigin(coord0,ordered=True):
|
|||
start = origin + delta*.5
|
||||
end = origin - delta*.5 + size
|
||||
|
||||
if not _np.allclose(coords[0],_np.linspace(start[0],end[0],grid[0])) and \
|
||||
_np.allclose(coords[1],_np.linspace(start[1],end[1],grid[1])) and \
|
||||
_np.allclose(coords[2],_np.linspace(start[2],end[2],grid[2])):
|
||||
if not (_np.allclose(coords[0],_np.linspace(start[0],end[0],grid[0])) and \
|
||||
_np.allclose(coords[1],_np.linspace(start[1],end[1],grid[1])) and \
|
||||
_np.allclose(coords[2],_np.linspace(start[2],end[2],grid[2]))):
|
||||
raise ValueError('Regular grid spacing violated.')
|
||||
|
||||
if ordered and not _np.allclose(coord0.reshape(tuple(grid[::-1])+(3,)),cell_coord0(grid,size,origin)):
|
||||
raise ValueError('Input data is not a regular grid.')
|
||||
if ordered and not _np.allclose(coord0.reshape(tuple(grid)+(3,),order='F'),cell_coord0(grid,size,origin)):
|
||||
raise ValueError('Input data is not ordered (x fast, z slow).')
|
||||
|
||||
return (grid,size,origin)
|
||||
|
||||
|
@ -241,17 +268,18 @@ def node_coord0(grid,size,origin=_np.zeros(3)):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
grid : numpy.ndarray
|
||||
grid : numpy.ndarray of shape (3)
|
||||
number of grid points.
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
origin : numpy.ndarray, optional
|
||||
origin : numpy.ndarray of shape (3), optional
|
||||
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
||||
"""
|
||||
return _np.mgrid[origin[0]:size[0]+origin[0]:(grid[0]+1)*1j,
|
||||
origin[1]:size[1]+origin[1]:(grid[1]+1)*1j,
|
||||
origin[2]:size[2]+origin[2]:(grid[2]+1)*1j].T
|
||||
return _np.stack(_np.meshgrid(_np.linspace(origin[0],size[0]+origin[0],grid[0]+1),
|
||||
_np.linspace(origin[1],size[1]+origin[1],grid[1]+1),
|
||||
_np.linspace(origin[2],size[2]+origin[2],grid[2]+1),indexing = 'ij'),
|
||||
axis = -1)
|
||||
|
||||
|
||||
def node_displacement_fluct(size,F):
|
||||
|
@ -260,7 +288,7 @@ def node_displacement_fluct(size,F):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
@ -275,14 +303,14 @@ def node_displacement_avg(size,F):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
||||
"""
|
||||
F_avg = _np.average(F,axis=(0,1,2))
|
||||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),node_coord0(F.shape[:3][::-1],size))
|
||||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),node_coord0(F.shape[:3],size))
|
||||
|
||||
|
||||
def node_displacement(size,F):
|
||||
|
@ -291,7 +319,7 @@ def node_displacement(size,F):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
|
@ -306,15 +334,15 @@ def node_coord(size,F,origin=_np.zeros(3)):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
deformation gradient field.
|
||||
origin : numpy.ndarray, optional
|
||||
origin : numpy.ndarray of shape (3), optional
|
||||
physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
||||
"""
|
||||
return node_coord0(F.shape[:3][::-1],size,origin) + node_displacement(size,F)
|
||||
return node_coord0(F.shape[:3],size,origin) + node_displacement(size,F)
|
||||
|
||||
|
||||
def cell_2_node(cell_data):
|
||||
|
@ -335,14 +363,14 @@ def node_2_cell(node_data):
|
|||
return c[:-1,:-1,:-1]
|
||||
|
||||
|
||||
def node_coord0_gridSizeOrigin(coord0,ordered=False):
|
||||
def node_coord0_gridSizeOrigin(coord0,ordered=True):
|
||||
"""
|
||||
Return grid 'DNA', i.e. grid, size, and origin from array of nodal positions.
|
||||
Return grid 'DNA', i.e. grid, size, and origin from 1D array of nodal positions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
coord0 : numpy.ndarray
|
||||
array of undeformed nodal coordinates.
|
||||
coord0 : numpy.ndarray of shape (:,3)
|
||||
undeformed nodal coordinates.
|
||||
ordered : bool, optional
|
||||
expect coord0 data to be ordered (x fast, z slow).
|
||||
|
||||
|
@ -357,13 +385,13 @@ def node_coord0_gridSizeOrigin(coord0,ordered=False):
|
|||
if (grid+1).prod() != len(coord0):
|
||||
raise ValueError('Data count {} does not match grid {}.'.format(len(coord0),grid))
|
||||
|
||||
if not _np.allclose(coords[0],_np.linspace(mincorner[0],maxcorner[0],grid[0]+1)) and \
|
||||
_np.allclose(coords[1],_np.linspace(mincorner[1],maxcorner[1],grid[1]+1)) and \
|
||||
_np.allclose(coords[2],_np.linspace(mincorner[2],maxcorner[2],grid[2]+1)):
|
||||
if not (_np.allclose(coords[0],_np.linspace(mincorner[0],maxcorner[0],grid[0]+1)) and \
|
||||
_np.allclose(coords[1],_np.linspace(mincorner[1],maxcorner[1],grid[1]+1)) and \
|
||||
_np.allclose(coords[2],_np.linspace(mincorner[2],maxcorner[2],grid[2]+1))):
|
||||
raise ValueError('Regular grid spacing violated.')
|
||||
|
||||
if ordered and not _np.allclose(coord0.reshape(tuple((grid+1)[::-1])+(3,)),node_coord0(grid,size,origin)):
|
||||
raise ValueError('Input data is not a regular grid.')
|
||||
if ordered and not _np.allclose(coord0.reshape(tuple(grid+1)+(3,),order='F'),node_coord0(grid,size,origin)):
|
||||
raise ValueError('Input data is not ordered (x fast, z slow).')
|
||||
|
||||
return (grid,size,origin)
|
||||
|
||||
|
@ -374,15 +402,15 @@ def regrid(size,F,new_grid):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray
|
||||
size : numpy.ndarray of shape (3)
|
||||
physical size
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray of shape (:,:,:,3,3)
|
||||
deformation gradient field
|
||||
new_grid : numpy.ndarray
|
||||
new_grid : numpy.ndarray of shape (3)
|
||||
new grid for undeformed coordinates
|
||||
|
||||
"""
|
||||
c = cell_coord0(F.shape[:3][::-1],size) \
|
||||
c = cell_coord0(F.shape[:3],size) \
|
||||
+ cell_displacement_avg(size,F) \
|
||||
+ cell_displacement_fluct(size,F)
|
||||
|
||||
|
|
|
@ -135,16 +135,16 @@ def PK2(P,F):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
P : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
P : numpy.ndarray of shape (...,3,3) or (3,3)
|
||||
First Piola-Kirchhoff stress.
|
||||
F : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
F : numpy.ndarray of shape (...,3,3) or (3,3)
|
||||
Deformation gradient.
|
||||
|
||||
"""
|
||||
if _np.shape(F) == _np.shape(P) == (3,3):
|
||||
S = _np.dot(_np.linalg.inv(F),P)
|
||||
else:
|
||||
S = _np.einsum('ijk,ikl->ijl',_np.linalg.inv(F),P)
|
||||
S = _np.einsum('...jk,...kl->...jl',_np.linalg.inv(F),P)
|
||||
return symmetric(S)
|
||||
|
||||
|
||||
|
@ -241,7 +241,7 @@ def symmetric(T):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
T : numpy.ndarray of shape (...,3,3) or (3,3)
|
||||
Tensor of which the symmetrized values are computed.
|
||||
|
||||
"""
|
||||
|
@ -254,12 +254,12 @@ def transpose(T):
|
|||
|
||||
Parameters
|
||||
----------
|
||||
T : numpy.ndarray of shape (:,3,3) or (3,3)
|
||||
T : numpy.ndarray of shape (...,3,3) or (3,3)
|
||||
Tensor of which the transpose is computed.
|
||||
|
||||
"""
|
||||
return T.T if _np.shape(T) == (3,3) else \
|
||||
_np.transpose(T,(0,2,1))
|
||||
_np.swapaxes(T,axis2=-2,axis1=-1)
|
||||
|
||||
|
||||
def _polar_decomposition(T,requested):
|
||||
|
|
|
@ -157,6 +157,30 @@ class TestRotation:
|
|||
print(m,o,rot.asQuaternion())
|
||||
assert ok and o.max() < np.pi**(2./3.)*0.5+1.e-9
|
||||
|
||||
@pytest.mark.parametrize('function',[Rotation.from_quaternion,
|
||||
Rotation.from_Eulers,
|
||||
Rotation.from_axis_angle,
|
||||
Rotation.from_matrix,
|
||||
Rotation.from_Rodrigues,
|
||||
Rotation.from_homochoric])
|
||||
def test_invalid_shape(self,function):
|
||||
invalid_shape = np.random.random(np.random.randint(8,32,(3)))
|
||||
with pytest.raises(ValueError):
|
||||
function(invalid_shape)
|
||||
|
||||
@pytest.mark.parametrize('function,invalid',[(Rotation.from_quaternion, np.array([-1,0,0,0])),
|
||||
(Rotation.from_quaternion, np.array([1,1,1,0])),
|
||||
(Rotation.from_Eulers, np.array([1,4,0])),
|
||||
(Rotation.from_axis_angle, np.array([1,0,0,4])),
|
||||
(Rotation.from_axis_angle, np.array([1,1,0,1])),
|
||||
(Rotation.from_matrix, np.random.rand(3,3)),
|
||||
(Rotation.from_Rodrigues, np.array([1,0,0,-1])),
|
||||
(Rotation.from_Rodrigues, np.array([1,1,0,1])),
|
||||
(Rotation.from_homochoric, np.array([2,2,2])) ])
|
||||
def test_invalid(self,function,invalid):
|
||||
with pytest.raises(ValueError):
|
||||
function(invalid)
|
||||
|
||||
@pytest.mark.parametrize('conversion',[Rotation.qu2om,
|
||||
Rotation.qu2eu,
|
||||
Rotation.qu2ax,
|
||||
|
|
|
@ -4,18 +4,18 @@ import numpy as np
|
|||
from damask import grid_filters
|
||||
|
||||
class TestGridFilters:
|
||||
|
||||
|
||||
def test_cell_coord0(self):
|
||||
size = np.random.random(3)
|
||||
grid = np.random.randint(8,32,(3))
|
||||
coord = grid_filters.cell_coord0(grid,size)
|
||||
assert np.allclose(coord[0,0,0],size/grid*.5) and coord.shape == tuple(grid[::-1]) + (3,)
|
||||
assert np.allclose(coord[0,0,0],size/grid*.5) and coord.shape == tuple(grid) + (3,)
|
||||
|
||||
def test_node_coord0(self):
|
||||
size = np.random.random(3)
|
||||
grid = np.random.randint(8,32,(3))
|
||||
coord = grid_filters.node_coord0(grid,size)
|
||||
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(grid[::-1]+1) + (3,)
|
||||
assert np.allclose(coord[-1,-1,-1],size) and coord.shape == tuple(grid+1) + (3,)
|
||||
|
||||
def test_coord0(self):
|
||||
size = np.random.random(3)
|
||||
|
@ -31,7 +31,7 @@ class TestGridFilters:
|
|||
size = np.random.random(3)
|
||||
origin = np.random.random(3)
|
||||
coord0 = eval('grid_filters.{}_coord0(grid,size,origin)'.format(mode)) # noqa
|
||||
_grid,_size,_origin = eval('grid_filters.{}_coord0_gridSizeOrigin(coord0.reshape(-1,3))'.format(mode))
|
||||
_grid,_size,_origin = eval('grid_filters.{}_coord0_gridSizeOrigin(coord0.reshape(-1,3,order="F"))'.format(mode))
|
||||
assert np.allclose(grid,_grid) and np.allclose(size,_size) and np.allclose(origin,_origin)
|
||||
|
||||
def test_displacement_fluct_equivalence(self):
|
||||
|
@ -57,9 +57,9 @@ class TestGridFilters:
|
|||
shifted = eval('grid_filters.{}_coord0(grid,size,origin)'.format(mode))
|
||||
unshifted = eval('grid_filters.{}_coord0(grid,size)'.format(mode))
|
||||
if mode == 'cell':
|
||||
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid[::-1]) +(3,)))
|
||||
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid) +(3,)))
|
||||
elif mode == 'node':
|
||||
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid[::-1]+1)+(3,)))
|
||||
assert np.allclose(shifted,unshifted+np.broadcast_to(origin,tuple(grid+1)+(3,)))
|
||||
|
||||
@pytest.mark.parametrize('function',[grid_filters.cell_displacement_avg,
|
||||
grid_filters.node_displacement_avg])
|
||||
|
@ -80,8 +80,43 @@ class TestGridFilters:
|
|||
F = np.broadcast_to(np.random.random((3,3)), tuple(grid)+(3,3))
|
||||
assert np.allclose(function(size,F),0.0)
|
||||
|
||||
@pytest.mark.parametrize('function',[grid_filters.coord0_check,
|
||||
grid_filters.node_coord0_gridSizeOrigin,
|
||||
grid_filters.cell_coord0_gridSizeOrigin])
|
||||
def test_invalid_coordinates(self,function):
|
||||
invalid_coordinates = np.random.random((np.random.randint(12,52),3))
|
||||
with pytest.raises(ValueError):
|
||||
function(invalid_coordinates)
|
||||
|
||||
@pytest.mark.parametrize('function',[grid_filters.node_coord0_gridSizeOrigin,
|
||||
grid_filters.cell_coord0_gridSizeOrigin])
|
||||
def test_uneven_spaced_coordinates(self,function):
|
||||
start = np.random.random(3)
|
||||
end = np.random.random(3)*10. + start
|
||||
grid = np.random.randint(8,32,(3))
|
||||
uneven = np.stack(np.meshgrid(np.logspace(start[0],end[0],grid[0]),
|
||||
np.logspace(start[1],end[1],grid[1]),
|
||||
np.logspace(start[2],end[2],grid[2]),indexing = 'ij'),
|
||||
axis = -1).reshape((grid.prod(),3),order='F')
|
||||
with pytest.raises(ValueError):
|
||||
function(uneven)
|
||||
|
||||
@pytest.mark.parametrize('mode',[True,False])
|
||||
@pytest.mark.parametrize('function',[grid_filters.node_coord0_gridSizeOrigin,
|
||||
grid_filters.cell_coord0_gridSizeOrigin])
|
||||
def test_unordered_coordinates(self,function,mode):
|
||||
origin = np.random.random(3)
|
||||
size = np.random.random(3)*10.+origin
|
||||
grid = np.random.randint(8,32,(3))
|
||||
unordered = grid_filters.node_coord0(grid,size,origin).reshape(-1,3)
|
||||
if mode:
|
||||
with pytest.raises(ValueError):
|
||||
function(unordered,mode)
|
||||
else:
|
||||
function(unordered,mode)
|
||||
|
||||
def test_regrid(self):
|
||||
size = np.random.random(3)
|
||||
grid = np.random.randint(8,32,(3))
|
||||
F = np.broadcast_to(np.eye(3), tuple(grid[::-1])+(3,3))
|
||||
F = np.broadcast_to(np.eye(3), tuple(grid)+(3,3))
|
||||
assert all(grid_filters.regrid(size,F,grid) == np.arange(grid.prod()))
|
||||
|
|
|
@ -73,28 +73,24 @@ subroutine CPFEM_initAll(el,ip)
|
|||
integer(pInt), intent(in) :: el, & !< FE el number
|
||||
ip !< FE integration point number
|
||||
|
||||
!$OMP CRITICAL(init)
|
||||
if (.not. CPFEM_init_done) then
|
||||
call DAMASK_interface_init
|
||||
call prec_init
|
||||
call IO_init
|
||||
call numerics_init
|
||||
call debug_init
|
||||
call config_init
|
||||
call math_init
|
||||
call rotations_init
|
||||
call HDF5_utilities_init
|
||||
call results_init
|
||||
call discretization_marc_init(ip, el)
|
||||
call lattice_init
|
||||
call material_init
|
||||
call constitutive_init
|
||||
call crystallite_init
|
||||
call homogenization_init
|
||||
call CPFEM_init
|
||||
CPFEM_init_done = .true.
|
||||
endif
|
||||
!$OMP END CRITICAL(init)
|
||||
CPFEM_init_done = .true.
|
||||
call DAMASK_interface_init
|
||||
call prec_init
|
||||
call IO_init
|
||||
call numerics_init
|
||||
call debug_init
|
||||
call config_init
|
||||
call math_init
|
||||
call rotations_init
|
||||
call HDF5_utilities_init
|
||||
call results_init
|
||||
call discretization_marc_init(ip, el)
|
||||
call lattice_init
|
||||
call material_init
|
||||
call constitutive_init
|
||||
call crystallite_init
|
||||
call homogenization_init
|
||||
call CPFEM_init
|
||||
|
||||
end subroutine CPFEM_initAll
|
||||
|
||||
|
|
|
@ -261,11 +261,10 @@ subroutine hypela2(d,g,e,de,s,t,dt,ngens,m,nn,kcus,matus,ndi,nshear,disp, &
|
|||
endif
|
||||
|
||||
!$ defaultNumThreadsInt = omp_get_num_threads() ! remember number of threads set by Marc
|
||||
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
|
||||
|
||||
if (.not. CPFEM_init_done) call CPFEM_initAll(m(1),nn)
|
||||
|
||||
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
|
||||
|
||||
computationMode = 0 ! save initialization value, since it does not result in any calculation
|
||||
if (lovl == 4 ) then ! jacobian requested by marc
|
||||
if (timinc < theDelta .and. theInc == inc .and. lastLovl /= lovl) & ! first after cutback
|
||||
|
|
|
@ -327,7 +327,7 @@ module constitutive
|
|||
constitutive_initialFi, &
|
||||
constitutive_SandItsTangents, &
|
||||
constitutive_collectDotState, &
|
||||
constitutive_collectDeltaState, &
|
||||
constitutive_deltaState, &
|
||||
constitutive_results
|
||||
|
||||
contains
|
||||
|
@ -709,12 +709,14 @@ end subroutine constitutive_hooke_SandItsTangents
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip, el)
|
||||
function constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip, el,phase,of) result(broken)
|
||||
|
||||
integer, intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
el !< element
|
||||
el, & !< element
|
||||
phase, &
|
||||
of
|
||||
real(pReal), intent(in) :: &
|
||||
subdt !< timestep
|
||||
real(pReal), intent(in), dimension(3,3,homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
|
||||
|
@ -730,16 +732,16 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip,
|
|||
ho, & !< homogenization
|
||||
tme, & !< thermal member position
|
||||
i, & !< counter in source loop
|
||||
instance, of
|
||||
instance
|
||||
logical :: broken
|
||||
|
||||
ho = material_homogenizationAt(el)
|
||||
tme = thermalMapping(ho)%p(ip,el)
|
||||
of = material_phasememberAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
||||
instance = phase_plasticityInstance(phase)
|
||||
|
||||
Mp = matmul(matmul(transpose(Fi),Fi),S)
|
||||
|
||||
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
||||
plasticityType: select case (phase_plasticity(phase))
|
||||
|
||||
case (PLASTICITY_ISOTROPIC_ID) plasticityType
|
||||
call plastic_isotropic_dotState (Mp,instance,of)
|
||||
|
@ -760,10 +762,11 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip,
|
|||
call plastic_nonlocal_dotState (Mp,FArray,FpArray,temperature(ho)%p(tme),subdt, &
|
||||
instance,of,ip,el)
|
||||
end select plasticityType
|
||||
broken = any(IEEE_is_NaN(plasticState(phase)%dotState(:,of)))
|
||||
|
||||
SourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
|
||||
SourceLoop: do i = 1, phase_Nsources(phase)
|
||||
|
||||
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
|
||||
sourceType: select case (phase_source(i,phase))
|
||||
|
||||
case (SOURCE_damage_anisoBrittle_ID) sourceType
|
||||
call source_damage_anisoBrittle_dotState (S, ipc, ip, el) !< correct stress?
|
||||
|
@ -775,25 +778,29 @@ subroutine constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip,
|
|||
call source_damage_anisoDuctile_dotState ( ipc, ip, el)
|
||||
|
||||
case (SOURCE_thermal_externalheat_ID) sourceType
|
||||
call source_thermal_externalheat_dotState(material_phaseAt(ipc,el),of)
|
||||
call source_thermal_externalheat_dotState(phase,of)
|
||||
|
||||
end select sourceType
|
||||
|
||||
broken = broken .or. any(IEEE_is_NaN(sourceState(phase)%p(i)%dotState(:,of)))
|
||||
|
||||
enddo SourceLoop
|
||||
|
||||
end subroutine constitutive_collectDotState
|
||||
end function constitutive_collectDotState
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief for constitutive models having an instantaneous change of state
|
||||
!> will return false if delta state is not needed/supported by the constitutive model
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine constitutive_collectDeltaState(S, Fe, Fi, ipc, ip, el)
|
||||
function constitutive_deltaState(S, Fe, Fi, ipc, ip, el, phase, of) result(broken)
|
||||
|
||||
integer, intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
el !< element
|
||||
el, & !< element
|
||||
phase, &
|
||||
of
|
||||
real(pReal), intent(in), dimension(3,3) :: &
|
||||
S, & !< 2nd Piola Kirchhoff stress
|
||||
Fe, & !< elastic deformation gradient
|
||||
|
@ -802,35 +809,62 @@ subroutine constitutive_collectDeltaState(S, Fe, Fi, ipc, ip, el)
|
|||
Mp
|
||||
integer :: &
|
||||
i, &
|
||||
instance, of
|
||||
instance, &
|
||||
myOffset, &
|
||||
mySize
|
||||
logical :: &
|
||||
broken
|
||||
|
||||
Mp = matmul(matmul(transpose(Fi),Fi),S)
|
||||
of = material_phasememberAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
|
||||
instance = phase_plasticityInstance(phase)
|
||||
|
||||
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
|
||||
plasticityType: select case (phase_plasticity(phase))
|
||||
|
||||
case (PLASTICITY_KINEHARDENING_ID) plasticityType
|
||||
call plastic_kinehardening_deltaState(Mp,instance,of)
|
||||
broken = any(IEEE_is_NaN(plasticState(phase)%deltaState(:,of)))
|
||||
|
||||
case (PLASTICITY_NONLOCAL_ID) plasticityType
|
||||
call plastic_nonlocal_deltaState(Mp,instance,of,ip,el)
|
||||
broken = any(IEEE_is_NaN(plasticState(phase)%deltaState(:,of)))
|
||||
|
||||
case default
|
||||
broken = .false.
|
||||
|
||||
end select plasticityType
|
||||
|
||||
sourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
|
||||
if(.not. broken) then
|
||||
select case(phase_plasticity(phase))
|
||||
case (PLASTICITY_NONLOCAL_ID,PLASTICITY_KINEHARDENING_ID)
|
||||
|
||||
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
|
||||
myOffset = plasticState(phase)%offsetDeltaState
|
||||
mySize = plasticState(phase)%sizeDeltaState
|
||||
plasticState(phase)%state(myOffset + 1:myOffset + mySize,of) = &
|
||||
plasticState(phase)%state(myOffset + 1:myOffset + mySize,of) + plasticState(phase)%deltaState(1:mySize,of)
|
||||
end select
|
||||
endif
|
||||
|
||||
|
||||
sourceLoop: do i = 1, phase_Nsources(phase)
|
||||
|
||||
sourceType: select case (phase_source(i,phase))
|
||||
|
||||
case (SOURCE_damage_isoBrittle_ID) sourceType
|
||||
call source_damage_isoBrittle_deltaState (constitutive_homogenizedC(ipc,ip,el), Fe, &
|
||||
ipc, ip, el)
|
||||
broken = broken .or. any(IEEE_is_NaN(sourceState(phase)%p(i)%deltaState(:,of)))
|
||||
if(.not. broken) then
|
||||
myOffset = sourceState(phase)%p(i)%offsetDeltaState
|
||||
mySize = sourceState(phase)%p(i)%sizeDeltaState
|
||||
sourceState(phase)%p(i)%state(myOffset + 1: myOffset + mySize,of) = &
|
||||
sourceState(phase)%p(i)%state(myOffset + 1: myOffset + mySize,of) + sourceState(phase)%p(i)%deltaState(1:mySize,of)
|
||||
endif
|
||||
|
||||
end select sourceType
|
||||
|
||||
enddo SourceLoop
|
||||
|
||||
end subroutine constitutive_collectDeltaState
|
||||
end function constitutive_deltaState
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
|
|
@ -209,7 +209,7 @@ module subroutine plastic_disloUCLA_init
|
|||
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl
|
||||
sizeState = sizeDotState
|
||||
|
||||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
|
||||
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
|
|
|
@ -399,7 +399,7 @@ module subroutine plastic_dislotwin_init
|
|||
+ size(['f_tr']) * prm%sum_N_tr
|
||||
sizeState = sizeDotState
|
||||
|
||||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
|
||||
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! locally defined state aliases and initialization of state0 and atol
|
||||
|
|
|
@ -117,7 +117,7 @@ module subroutine plastic_isotropic_init
|
|||
sizeDotState = size(['xi ','accumulated_shear'])
|
||||
sizeState = sizeDotState
|
||||
|
||||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
|
||||
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
|
|
|
@ -164,7 +164,7 @@ module subroutine plastic_kinehardening_init
|
|||
sizeDeltaState = size(['sense ', 'chi0 ', 'gamma0' ]) * prm%sum_N_sl
|
||||
sizeState = sizeDotState + sizeDeltaState
|
||||
|
||||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
|
||||
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
|
|
|
@ -29,7 +29,7 @@ module subroutine plastic_none_init
|
|||
if (phase_plasticity(p) /= PLASTICITY_NONE_ID) cycle
|
||||
|
||||
NipcMyPhase = count(material_phaseAt == p) * discretization_nIP
|
||||
call material_allocatePlasticState(p,NipcMyPhase,0,0,0)
|
||||
call material_allocateState(plasticState(p),NipcMyPhase,0,0,0)
|
||||
|
||||
enddo
|
||||
|
||||
|
|
|
@ -320,6 +320,7 @@ module subroutine plastic_nonlocal_init
|
|||
prm%fEdgeMultiplication = config%getFloat('edgemultiplication')
|
||||
prm%shortRangeStressCorrection = config%keyExists('/shortrangestresscorrection/')
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! sanity checks
|
||||
if (any(prm%burgers < 0.0_pReal)) extmsg = trim(extmsg)//' burgers'
|
||||
|
@ -384,9 +385,9 @@ module subroutine plastic_nonlocal_init
|
|||
'maxDipoleHeightEdge ','maxDipoleHeightScrew' ]) * prm%sum_N_sl !< other dependent state variables that are not updated by microstructure
|
||||
sizeDeltaState = sizeDotState
|
||||
|
||||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
|
||||
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
|
||||
|
||||
plasticState(p)%nonlocal = .true.
|
||||
plasticState(p)%nonlocal = config%KeyExists('/nonlocal/')
|
||||
plasticState(p)%offsetDeltaState = 0 ! ToDo: state structure does not follow convention
|
||||
|
||||
st0%rho => plasticState(p)%state0 (0*prm%sum_N_sl+1:10*prm%sum_N_sl,:)
|
||||
|
|
|
@ -213,7 +213,7 @@ module subroutine plastic_phenopowerlaw_init
|
|||
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
|
||||
sizeState = sizeDotState
|
||||
|
||||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0)
|
||||
call material_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! state aliases and initialization
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -11,7 +11,6 @@ module material
|
|||
use results
|
||||
use IO
|
||||
use debug
|
||||
use numerics
|
||||
use rotations
|
||||
use discretization
|
||||
|
||||
|
@ -174,8 +173,7 @@ module material
|
|||
|
||||
public :: &
|
||||
material_init, &
|
||||
material_allocatePlasticState, &
|
||||
material_allocateSourceState, &
|
||||
material_allocateState, &
|
||||
ELASTICITY_HOOKE_ID ,&
|
||||
PLASTICITY_NONE_ID, &
|
||||
PLASTICITY_ISOTROPIC_ID, &
|
||||
|
@ -700,63 +698,35 @@ end subroutine material_parseTexture
|
|||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief allocates the plastic state of a phase
|
||||
!> @brief Allocate the components of the state structure for a given phase
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine material_allocatePlasticState(phase,NipcMyPhase,&
|
||||
sizeState,sizeDotState,sizeDeltaState)
|
||||
subroutine material_allocateState(state, &
|
||||
NipcMyPhase,sizeState,sizeDotState,sizeDeltaState)
|
||||
|
||||
class(tState), intent(out) :: &
|
||||
state
|
||||
integer, intent(in) :: &
|
||||
phase, &
|
||||
NipcMyPhase, &
|
||||
sizeState, &
|
||||
sizeDotState, &
|
||||
sizeDeltaState
|
||||
|
||||
plasticState(phase)%sizeState = sizeState
|
||||
plasticState(phase)%sizeDotState = sizeDotState
|
||||
plasticState(phase)%sizeDeltaState = sizeDeltaState
|
||||
plasticState(phase)%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
|
||||
state%sizeState = sizeState
|
||||
state%sizeDotState = sizeDotState
|
||||
state%sizeDeltaState = sizeDeltaState
|
||||
state%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
|
||||
|
||||
allocate(plasticState(phase)%atol (sizeState), source=0.0_pReal)
|
||||
allocate(plasticState(phase)%state0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(plasticState(phase)%partionedState0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(plasticState(phase)%subState0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(plasticState(phase)%state (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(state%atol (sizeState), source=0.0_pReal)
|
||||
allocate(state%state0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(state%partionedState0(sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(state%subState0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(state%state (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
|
||||
allocate(plasticState(phase)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(state%dotState (sizeDotState,NipcMyPhase), source=0.0_pReal)
|
||||
|
||||
allocate(plasticState(phase)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(state%deltaState(sizeDeltaState,NipcMyPhase), source=0.0_pReal)
|
||||
|
||||
end subroutine material_allocatePlasticState
|
||||
end subroutine material_allocateState
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief allocates the source state of a phase
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine material_allocateSourceState(phase,of,NipcMyPhase,&
|
||||
sizeState,sizeDotState,sizeDeltaState)
|
||||
|
||||
integer, intent(in) :: &
|
||||
phase, &
|
||||
of, &
|
||||
NipcMyPhase, &
|
||||
sizeState, sizeDotState,sizeDeltaState
|
||||
|
||||
sourceState(phase)%p(of)%sizeState = sizeState
|
||||
sourceState(phase)%p(of)%sizeDotState = sizeDotState
|
||||
sourceState(phase)%p(of)%sizeDeltaState = sizeDeltaState
|
||||
sourceState(phase)%p(of)%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
|
||||
|
||||
allocate(sourceState(phase)%p(of)%atol (sizeState), source=0.0_pReal)
|
||||
allocate(sourceState(phase)%p(of)%state0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(sourceState(phase)%p(of)%partionedState0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(sourceState(phase)%p(of)%subState0 (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
allocate(sourceState(phase)%p(of)%state (sizeState,NipcMyPhase), source=0.0_pReal)
|
||||
|
||||
allocate(sourceState(phase)%p(of)%dotState (sizeDotState,NipcMyPhase),source=0.0_pReal)
|
||||
|
||||
allocate(sourceState(phase)%p(of)%deltaState (sizeDeltaState,NipcMyPhase),source=0.0_pReal)
|
||||
|
||||
end subroutine material_allocateSourceState
|
||||
|
||||
end module material
|
||||
|
|
|
@ -20,8 +20,7 @@ module numerics
|
|||
iJacoStiffness = 1, & !< frequency of stiffness update
|
||||
randomSeed = 0, & !< fixed seeding for pseudo-random number generator, Default 0: use random seed
|
||||
worldrank = 0, & !< MPI worldrank (/=0 for MPI simulations only)
|
||||
worldsize = 1, & !< MPI worldsize (/=1 for MPI simulations only)
|
||||
numerics_integrator = 1 !< method used for state integration Default 1: fix-point iteration
|
||||
worldsize = 1 !< MPI worldsize (/=1 for MPI simulations only)
|
||||
integer(4), protected, public :: &
|
||||
DAMASK_NumThreadsInt = 0 !< value stored in environment variable DAMASK_NUM_THREADS, set to zero if no OpenMP directive
|
||||
real(pReal), protected, public :: &
|
||||
|
@ -134,8 +133,6 @@ subroutine numerics_init
|
|||
defgradTolerance = IO_floatValue(line,chunkPos,2)
|
||||
case ('ijacostiffness')
|
||||
iJacoStiffness = IO_intValue(line,chunkPos,2)
|
||||
case ('integrator')
|
||||
numerics_integrator = IO_intValue(line,chunkPos,2)
|
||||
case ('usepingpong')
|
||||
usepingpong = IO_intValue(line,chunkPos,2) > 0
|
||||
case ('unitlength')
|
||||
|
@ -176,6 +173,11 @@ subroutine numerics_init
|
|||
case ('maxstaggerediter')
|
||||
stagItMax = IO_intValue(line,chunkPos,2)
|
||||
|
||||
#ifdef PETSC
|
||||
case ('petsc_options')
|
||||
petsc_options = trim(line(chunkPos(4):))
|
||||
#endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! spectral parameters
|
||||
#ifdef Grid
|
||||
|
@ -187,8 +189,6 @@ subroutine numerics_init
|
|||
err_stress_tolrel = IO_floatValue(line,chunkPos,2)
|
||||
case ('err_stress_tolabs')
|
||||
err_stress_tolabs = IO_floatValue(line,chunkPos,2)
|
||||
case ('petsc_options')
|
||||
petsc_options = trim(line(chunkPos(4):))
|
||||
case ('err_curl_tolabs')
|
||||
err_curl_tolAbs = IO_floatValue(line,chunkPos,2)
|
||||
case ('err_curl_tolrel')
|
||||
|
@ -206,8 +206,6 @@ subroutine numerics_init
|
|||
integrationorder = IO_intValue(line,chunkPos,2)
|
||||
case ('structorder')
|
||||
structorder = IO_intValue(line,chunkPos,2)
|
||||
case ('petsc_options')
|
||||
petsc_options = trim(line(chunkPos(4):))
|
||||
case ('bbarstabilisation')
|
||||
BBarStabilisation = IO_intValue(line,chunkPos,2) > 0
|
||||
#endif
|
||||
|
@ -223,7 +221,6 @@ subroutine numerics_init
|
|||
! writing parameters to output
|
||||
write(6,'(a24,1x,es8.1)') ' defgradTolerance: ',defgradTolerance
|
||||
write(6,'(a24,1x,i8)') ' iJacoStiffness: ',iJacoStiffness
|
||||
write(6,'(a24,1x,i8)') ' integrator: ',numerics_integrator
|
||||
write(6,'(a24,1x,L8)') ' use ping pong scheme: ',usepingpong
|
||||
write(6,'(a24,1x,es8.1,/)')' unitlength: ',numerics_unitlength
|
||||
|
||||
|
@ -266,7 +263,6 @@ subroutine numerics_init
|
|||
write(6,'(a24,1x,es8.1)') ' err_curl_tolRel: ',err_curl_tolRel
|
||||
write(6,'(a24,1x,es8.1)') ' polarAlpha: ',polarAlpha
|
||||
write(6,'(a24,1x,es8.1)') ' polarBeta: ',polarBeta
|
||||
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_options)
|
||||
#endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -274,16 +270,17 @@ subroutine numerics_init
|
|||
#ifdef FEM
|
||||
write(6,'(a24,1x,i8)') ' integrationOrder: ',integrationOrder
|
||||
write(6,'(a24,1x,i8)') ' structOrder: ',structOrder
|
||||
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_options)
|
||||
write(6,'(a24,1x,L8)') ' B-Bar stabilisation: ',BBarStabilisation
|
||||
#endif
|
||||
|
||||
#ifdef PETSC
|
||||
write(6,'(a24,1x,a)') ' PETSc_options: ',trim(petsc_options)
|
||||
#endif
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! sanity checks
|
||||
if (defgradTolerance <= 0.0_pReal) call IO_error(301,ext_msg='defgradTolerance')
|
||||
if (iJacoStiffness < 1) call IO_error(301,ext_msg='iJacoStiffness')
|
||||
if (numerics_integrator <= 0 .or. numerics_integrator >= 6) &
|
||||
call IO_error(301,ext_msg='integrator')
|
||||
if (numerics_unitlength <= 0.0_pReal) call IO_error(301,ext_msg='unitlength')
|
||||
if (residualStiffness < 0.0_pReal) call IO_error(301,ext_msg='residualStiffness')
|
||||
if (itmax <= 1) call IO_error(301,ext_msg='itmax')
|
||||
|
|
|
@ -53,8 +53,7 @@ module prec
|
|||
logical :: &
|
||||
nonlocal = .false.
|
||||
real(pReal), pointer, dimension(:,:) :: &
|
||||
slipRate, & !< slip rate
|
||||
accumulatedSlip !< accumulated plastic slip
|
||||
slipRate !< slip rate
|
||||
end type
|
||||
|
||||
type :: tSourceState
|
||||
|
|
|
@ -107,7 +107,7 @@ subroutine source_damage_anisoBrittle_init
|
|||
if (any(prm%critDisp < 0.0_pReal)) extmsg = trim(extmsg)//' anisobrittle_critDisp'
|
||||
|
||||
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
|
||||
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
|
||||
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
|
||||
sourceState(p)%p(sourceOffset)%atol = config%getFloat('anisobrittle_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisobrittle_atol'
|
||||
|
||||
|
|
|
@ -89,7 +89,7 @@ subroutine source_damage_anisoDuctile_init
|
|||
if (any(prm%critPlasticStrain < 0.0_pReal)) extmsg = trim(extmsg)//' anisoductile_criticalplasticstrain'
|
||||
|
||||
NipcMyPhase=count(material_phaseAt==p) * discretization_nIP
|
||||
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
|
||||
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
|
||||
sourceState(p)%p(sourceOffset)%atol = config%getFloat('anisoductile_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' anisoductile_atol'
|
||||
|
||||
|
|
|
@ -83,7 +83,7 @@ subroutine source_damage_isoBrittle_init
|
|||
if (prm%critStrainEnergy <= 0.0_pReal) extmsg = trim(extmsg)//' isobrittle_criticalstrainenergy'
|
||||
|
||||
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
|
||||
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,1)
|
||||
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,1)
|
||||
sourceState(p)%p(sourceOffset)%atol = config%getFloat('isobrittle_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isobrittle_atol'
|
||||
|
||||
|
|
|
@ -82,7 +82,7 @@ subroutine source_damage_isoDuctile_init
|
|||
if (prm%critPlasticStrain <= 0.0_pReal) extmsg = trim(extmsg)//' isoductile_criticalplasticstrain'
|
||||
|
||||
NipcMyPhase=count(material_phaseAt==p) * discretization_nIP
|
||||
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
|
||||
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
|
||||
sourceState(p)%p(sourceOffset)%atol = config%getFloat('isoductile_atol',defaultVal=1.0e-3_pReal)
|
||||
if(any(sourceState(p)%p(sourceOffset)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' isoductile_atol'
|
||||
|
||||
|
|
|
@ -67,7 +67,7 @@ subroutine source_thermal_dissipation_init
|
|||
prm%kappa = config%getFloat('dissipation_coldworkcoeff')
|
||||
|
||||
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
|
||||
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,0,0,0)
|
||||
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,0,0,0)
|
||||
|
||||
end associate
|
||||
enddo
|
||||
|
|
|
@ -74,7 +74,7 @@ subroutine source_thermal_externalheat_init
|
|||
prm%heat_rate = config%getFloats('externalheat_rate',requiredSize = size(prm%time))
|
||||
|
||||
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
|
||||
call material_allocateSourceState(p,sourceOffset,NipcMyPhase,1,1,0)
|
||||
call material_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
|
||||
|
||||
end associate
|
||||
enddo
|
||||
|
|
Loading…
Reference in New Issue