large speedup (10x) for unconditional filtering by using read/writeArray
This commit is contained in:
parent
fc4fb43d48
commit
9e5896a6c5
|
@ -132,10 +132,15 @@ for name in filenames:
|
||||||
# ------------------------------------------ process and output data ------------------------------------------
|
# ------------------------------------------ process and output data ------------------------------------------
|
||||||
|
|
||||||
positions = np.array(positions)[order]
|
positions = np.array(positions)[order]
|
||||||
|
|
||||||
|
if options.condition is None: # read full array and filter columns
|
||||||
|
table.data_readArray(1+positions) # read desired columns (indexed 1,...)
|
||||||
|
table.data_writeArray() # directly write out
|
||||||
|
else:
|
||||||
outputAlive = True
|
outputAlive = True
|
||||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||||
specials['_row_'] += 1 # count row
|
specials['_row_'] += 1 # count row
|
||||||
if options.condition is None or eval(condition): # valid row ?
|
if eval(condition): # valid row ?
|
||||||
table.data = [table.data[position] for position in positions] # retain filtered columns
|
table.data = [table.data[position] for position in positions] # retain filtered columns
|
||||||
outputAlive = table.data_write() # output processed line
|
outputAlive = table.data_write() # output processed line
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue