vectorized

This commit is contained in:
Martin Diehl 2018-12-09 17:35:48 +01:00
parent ddecacb172
commit 9e03aae3bf
1 changed files with 111 additions and 121 deletions

View File

@ -22,10 +22,6 @@ module plastic_disloUCLA
real(pReal), parameter, private :: &
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
integer(pInt), dimension(:), allocatable, private :: &
plastic_disloUCLA_totalNslip !< total number of active slip systems for each instance
enum, bind(c)
enumerator :: undefined_ID, &
rho_ID, &
@ -185,9 +181,6 @@ subroutine plastic_disloUCLA_init()
allocate(plastic_disloUCLA_output(maxval(phase_Noutput),maxNinstance))
plastic_disloUCLA_output = ''
allocate(plastic_disloUCLA_totalNslip(maxNinstance), source=0_pInt)
allocate(param(maxNinstance))
allocate(state(maxNinstance))
allocate(dotState(maxNinstance))
@ -248,7 +241,6 @@ subroutine plastic_disloUCLA_init()
prm%minDipDistance = config_phase(p)%getFloat('cedgedipmindistance') * prm%burgers
prm%dipoleformation = config_phase(p)%getFloat('dipoleformationfactor') > 0.0_pReal !should be on by default
! expand: family => system
prm%rho0 = math_expand(prm%rho0, prm%Nslip)
prm%rhoDip0 = math_expand(prm%rhoDip0, prm%Nslip)
@ -266,7 +258,6 @@ subroutine plastic_disloUCLA_init()
prm%atomicVolume = math_expand(prm%atomicVolume, prm%Nslip)
prm%minDipDistance = math_expand(prm%minDipDistance, prm%Nslip)
plastic_disloUCLA_totalNslip(phase_plasticityInstance(p)) = prm%totalNslip
!if (plastic_disloUCLA_CAtomicVolume(instance) <= 0.0_pReal) &
! call IO_error(211_pInt,el=instance,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOUCLA_label//')')
! if (prm%D0 <= 0.0_pReal) &
@ -439,7 +430,7 @@ end subroutine plastic_disloUCLA_dependentState
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,of)
pure subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,of)
implicit none
integer(pInt), intent(in) :: instance, of
@ -496,7 +487,7 @@ subroutine plastic_disloUCLA_dotState(Mp,Temperature,instance,of)
real(pReal) :: &
VacancyDiffusion
real(pReal), dimension(plastic_disloUCLA_totalNslip(instance)) :: &
real(pReal), dimension(param(instance)%totalNslip) :: &
gdot_slip_pos, gdot_slip_neg,&
tau_slip_pos,&
tau_slip_neg, &
@ -629,7 +620,7 @@ end function plastic_disloUCLA_postResults
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
subroutine kinetics(prm,stt,dst,Mp,Temperature,of, &
pure subroutine kinetics(prm,stt,dst,Mp,Temperature,of, &
gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg)
use prec, only: &
tol_math_check, &
@ -661,11 +652,6 @@ math_mul33xx33
StressRatio_p,StressRatio_pminus1, &
DotGamma0, dvel_slip, vel_slip
gdot_slip_pos = 0.0_pReal
gdot_slip_neg = 0.0_pReal
dgdot_dtauslip_pos = 0.0_pReal
dgdot_dtauslip_neg = 0.0_pReal
do j = 1_pInt, prm%totalNslip
tau_slip_pos(j) = math_mul33xx33(Mp,prm%nonSchmid_pos(1:3,1:3,j))
tau_slip_neg(j) = math_mul33xx33(Mp,prm%nonSchmid_neg(1:3,1:3,j))
@ -674,127 +660,131 @@ math_mul33xx33
BoltzmannRatio = prm%H0kp/(kB*Temperature)
DotGamma0 = stt%rhoEdge(:,of)*prm%burgers*prm%v0
do j = 1_pInt, prm%totalNslip
significantPositiveTau: if(abs(tau_slip_pos(j))-dst%threshold_stress(j,of) > tol_math_check) then
StressRatio(j) = (abs(tau_slip_pos(j))-dst%threshold_stress(j,of)) &
/ (prm%solidSolutionStrength+prm%tau_Peierls(j))
StressRatio_p(j) = StressRatio(j)** prm%p(j)
StressRatio_pminus1(j) = StressRatio(j)**(prm%p(j)-1.0_pReal)
significantPositiveTau: where(abs(tau_slip_pos)-dst%threshold_stress(:,of) > tol_math_check)
StressRatio = (abs(tau_slip_pos)-dst%threshold_stress(:,of)) &
/ (prm%solidSolutionStrength+prm%tau_Peierls)
StressRatio_p = StressRatio** prm%p
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
vel_slip(j) = 2.0_pReal*prm%burgers(j) * prm%kink_height(j) * prm%omega(j) &
* ( dst%mfp(j,of) - prm%kink_width(j) ) &
* (tau_slip_pos(j) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) ) &
vel_slip = 2.0_pReal*prm%burgers * prm%kink_height * prm%omega &
* ( dst%mfp(:,of) - prm%kink_width ) &
* (tau_slip_pos &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) ) &
/ ( &
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_pos(j) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
2.0_pReal*(prm%burgers**2.0_pReal)*tau_slip_pos &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
)
gdot_slip_pos(j) = DotGamma0(j) * sign(vel_slip(j),tau_slip_pos(j))
gdot_slip_pos = DotGamma0 * sign(vel_slip,tau_slip_pos)
dvel_slip(j) = 2.0_pReal*prm%burgers(j) * prm%kink_height(j) * prm%omega(j) &
* ( dst%mfp(j,of) - prm%kink_width(j) ) &
dvel_slip = 2.0_pReal*prm%burgers * prm%kink_height * prm%omega &
* ( dst%mfp(:,of) - prm%kink_width ) &
* ( &
(exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
+ tau_slip_pos(j) &
* (abs(exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)))&
*BoltzmannRatio(j)*prm%p(j)&
*prm%q(j)/&
(prm%solidSolutionStrength+prm%tau_Peierls(j))*&
StressRatio_pminus1(j)*(1-StressRatio_p(j))**(prm%q(j)-1.0_pReal) ) &
(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
+ tau_slip_pos &
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q))&
*BoltzmannRatio*prm%p&
*prm%q/&
(prm%solidSolutionStrength+prm%tau_Peierls)*&
StressRatio_pminus1*(1-StressRatio_p)**(prm%q-1.0_pReal) ) &
) &
* (2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_pos(j) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
* (2.0_pReal*(prm%burgers**2.0_pReal)*tau_slip_pos &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
) &
- (tau_slip_pos(j) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) ) &
* (2.0_pReal*(prm%burgers(j)**2.0_pReal) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* (abs(exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)))&
*BoltzmannRatio(j)*prm%p(j)&
*prm%q(j)/&
(prm%solidSolutionStrength+prm%tau_Peierls(j))*&
StressRatio_pminus1(j)*(1-StressRatio_p(j))**(prm%q(j)-1.0_pReal) )&
- (tau_slip_pos &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) ) &
* (2.0_pReal*(prm%burgers**2.0_pReal) &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q))&
*BoltzmannRatio*prm%p&
*prm%q/&
(prm%solidSolutionStrength+prm%tau_Peierls)*&
StressRatio_pminus1*(1-StressRatio_p)**(prm%q-1.0_pReal) )&
) &
) &
/ ( &
( &
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_pos(j) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
2.0_pReal*(prm%burgers**2.0_pReal)*tau_slip_pos &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
)**2.0_pReal &
)
dgdot_dtauslip_pos(j) = DotGamma0(j) * dvel_slip(j)
dgdot_dtauslip_pos = DotGamma0 * dvel_slip
else where significantPositiveTau
gdot_slip_pos = 0.0_pReal
dgdot_dtauslip_pos = 0.0_pReal
end where significantPositiveTau
endif significantPositiveTau
significantNegativeTau: where(abs(tau_slip_neg)-dst%threshold_stress(:,of) > tol_math_check)
StressRatio = (abs(tau_slip_neg)-dst%threshold_stress(:,of)) &
/ (prm%solidSolutionStrength+prm%tau_Peierls)
StressRatio_p = StressRatio** prm%p
StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal)
significantNegativeTau: if(abs(tau_slip_neg(j))-dst%threshold_stress(j,of) > tol_math_check) then
StressRatio(j) = (abs(tau_slip_neg(j))-dst%threshold_stress(j,of)) &
/ (prm%solidSolutionStrength+prm%tau_Peierls(j))
StressRatio_p(j) = StressRatio(j)** prm%p(j)
StressRatio_pminus1(j) = StressRatio(j)**(prm%p(j)-1.0_pReal)
vel_slip(j) = 2.0_pReal*prm%burgers(j) * prm%kink_height(j) * prm%omega(j) &
* ( dst%mfp(j,of) - prm%kink_width(j) ) &
* (tau_slip_neg(j) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) ) &
vel_slip = 2.0_pReal*prm%burgers * prm%kink_height * prm%omega &
* ( dst%mfp(:,of) - prm%kink_width ) &
* (tau_slip_neg &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) ) &
/ ( &
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_neg(j) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
2.0_pReal*(prm%burgers**2.0_pReal)*tau_slip_neg &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
)
gdot_slip_neg(j) = DotGamma0(j) * sign(vel_slip(j),tau_slip_neg(j))
gdot_slip_neg = DotGamma0 * sign(vel_slip,tau_slip_neg)
dvel_slip(j) = 2.0_pReal*prm%burgers(j) * prm%kink_height(j) * prm%omega(j) &
* ( dst%mfp(j,of) - prm%kink_width(j) ) &
dvel_slip = 2.0_pReal*prm%burgers * prm%kink_height * prm%omega &
* ( dst%mfp(:,of) - prm%kink_width ) &
* ( &
(exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
+ tau_slip_neg(j) &
* (abs(exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)))&
*BoltzmannRatio(j)*prm%p(j)&
*prm%q(j)/&
(prm%solidSolutionStrength+prm%tau_Peierls(j))*&
StressRatio_pminus1(j)*(1-StressRatio_p(j))**(prm%q(j)-1.0_pReal) ) &
(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
+ tau_slip_neg &
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q))&
*BoltzmannRatio*prm%p&
*prm%q/&
(prm%solidSolutionStrength+prm%tau_Peierls)*&
StressRatio_pminus1*(1-StressRatio_p)**(prm%q-1.0_pReal) ) &
) &
* (2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_neg(j) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
* (2.0_pReal*(prm%burgers**2.0_pReal)*tau_slip_neg &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
) &
- (tau_slip_neg(j) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) ) &
* (2.0_pReal*(prm%burgers(j)**2.0_pReal) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* (abs(exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)))&
*BoltzmannRatio(j)*prm%p(j)&
*prm%q(j)/&
(prm%solidSolutionStrength+prm%tau_Peierls(j))*&
StressRatio_pminus1(j)*(1-StressRatio_p(j))**(prm%q(j)-1.0_pReal) )&
- (tau_slip_neg &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) ) &
* (2.0_pReal*(prm%burgers**2.0_pReal) &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q))&
*BoltzmannRatio*prm%p&
*prm%q/&
(prm%solidSolutionStrength+prm%tau_Peierls)*&
StressRatio_pminus1*(1-StressRatio_p)**(prm%q-1.0_pReal) )&
) &
) &
/ ( &
( &
2.0_pReal*(prm%burgers(j)**2.0_pReal)*tau_slip_neg(j) &
+ prm%omega(j) * prm%B(j) &
*(( dst%mfp(j,of) - prm%kink_width(j) )**2.0_pReal) &
* exp(-BoltzmannRatio(j)*(1-StressRatio_p(j)) ** prm%q(j)) &
2.0_pReal*(prm%burgers**2.0_pReal)*tau_slip_neg &
+ prm%omega * prm%B &
*(( dst%mfp(:,of) - prm%kink_width )**2.0_pReal) &
* exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) &
)**2.0_pReal &
)
dgdot_dtauslip_neg(j) = DotGamma0(j) * dvel_slip(j)
endif significantNegativeTau
enddo
dgdot_dtauslip_neg = DotGamma0 * dvel_slip
else where significantNegativeTau
gdot_slip_neg = 0.0_pReal
dgdot_dtauslip_neg = 0.0_pReal
end where significantNegativeTau
end subroutine kinetics