using central functionality

This commit is contained in:
Martin Diehl 2019-12-03 19:30:55 +01:00
parent e006e0ebec
commit 9ad8743396
2 changed files with 38 additions and 177 deletions

View File

@ -2,10 +2,10 @@
import os import os
import sys import sys
from io import StringIO
from optparse import OptionParser from optparse import OptionParser
import numpy as np import numpy as np
import scipy.ndimage
import damask import damask
@ -14,79 +14,6 @@ scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version]) scriptID = ' '.join([scriptName,damask.version])
#--------------------------------------------------------------------------------------------------
def cell2node(cellData,grid):
nodeData = 0.0
datalen = np.array(cellData.shape[3:]).prod()
for i in range(datalen):
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i],
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
mode = 'wrap',
origin = -1, # offset to have cell origin as center
) # now averaged at cell origins
node = np.append(node,node[np.newaxis,0,:,:,...],axis=0) # wrap along z
node = np.append(node,node[:,0,np.newaxis,:,...],axis=1) # wrap along y
node = np.append(node,node[:,:,0,np.newaxis,...],axis=2) # wrap along x
nodeData = node[...,np.newaxis] if i==0 else np.concatenate((nodeData,node[...,np.newaxis]),axis=-1)
return nodeData
#--------------------------------------------------------------------------------------------------
def displacementAvgFFT(F,grid,size,nodal=False,transformed=False):
"""Calculate average cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
if nodal:
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
np.linspace(0,size[1],1+grid[1]),
np.linspace(0,size[0],1+grid[0]),
indexing = 'ij')
else:
delta = size/grid*0.5
x, y, z = np.meshgrid(np.linspace(delta[2],size[2]-delta[2],grid[2]),
np.linspace(delta[1],size[1]-delta[1],grid[1]),
np.linspace(delta[0],size[0]-delta[0],grid[0]),
indexing = 'ij')
origCoords = np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
F_fourier = F if transformed else np.fft.rfftn(F,axes=(0,1,2)) # transform or use provided data
Favg = np.real(F_fourier[0,0,0,:,:])/grid.prod() # take zero freq for average
avgDisplacement = np.einsum('ml,ijkl->ijkm',Favg-np.eye(3),origCoords) # dX = Favg.X
return avgDisplacement
#--------------------------------------------------------------------------------------------------
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
"""Calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
integrator = 0.5j * size / np.pi
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1])),
np.arange(grid[0]//2+1),
indexing = 'ij')
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
k_sSquared = np.einsum('...l,...l',k_s,k_s)
k_sSquared[0,0,0] = 1.0 # ignore global average frequency
#--------------------------------------------------------------------------------------------------
# integration in Fourier space
displacement_fourier = -np.einsum('ijkml,ijkl,l->ijkm',
F if transformed else np.fft.rfftn(F,axes=(0,1,2)),
k_s,
integrator,
) / k_sSquared[...,np.newaxis]
#--------------------------------------------------------------------------------------------------
# backtransformation to real space
displacement = np.fft.irfftn(displacement_fourier,grid[::-1],axes=(0,1,2))
return cell2node(displacement,grid) if nodal else displacement
# -------------------------------------------------------------------- # --------------------------------------------------------------------
# MAIN # MAIN
# -------------------------------------------------------------------- # --------------------------------------------------------------------
@ -100,7 +27,7 @@ Outputs at cell centers or cell nodes (into separate file).
parser.add_option('-f', parser.add_option('-f',
'--defgrad', '--defgrad',
dest = 'defgrad', dest = 'f',
metavar = 'string', metavar = 'string',
help = 'label of deformation gradient [%default]') help = 'label of deformation gradient [%default]')
parser.add_option('-p', parser.add_option('-p',
@ -113,108 +40,35 @@ parser.add_option('--nodal',
action = 'store_true', action = 'store_true',
help = 'output nodal (instead of cell-centered) displacements') help = 'output nodal (instead of cell-centered) displacements')
parser.set_defaults(defgrad = 'f', parser.set_defaults(f = 'f',
pos = 'pos', pos = 'pos',
) )
(options,filenames) = parser.parse_args() (options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames: for name in filenames:
outname = (os.path.splitext(name)[0] + damask.util.report(scriptName,name)
'_nodal' +
os.path.splitext(name)[1]) if (options.nodal and name) else None
try: table = damask.ASCIItable(name = name,
outname = outname,
buffered = False)
except: continue
damask.util.report(scriptName,'{}{}'.format(name if name else '',
' --> {}'.format(outname) if outname else ''))
# ------------------------------------------ read header ------------------------------------------ table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
grid,size = damask.util.coordGridAndSize(table.get_array(options.pos))
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
if table.label_dimension(options.defgrad) != 9:
errors.append('deformation gradient "{}" is not a 3x3 tensor.'.format(options.defgrad))
coordDim = table.label_dimension(options.pos)
if not 3 >= coordDim >= 1:
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.pos))
elif coordDim < 3:
remarks.append('appending {} dimension{} to coordinates "{}"...'.format(3-coordDim,
's' if coordDim < 2 else '',
options.pos))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss=True)
continue
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray([options.defgrad,options.pos])
table.data_rewind()
if len(table.data.shape) < 2: table.data.shape += (1,) # expand to 2D shape
if table.data[:,9:].shape[1] < 3:
table.data = np.hstack((table.data,
np.zeros((table.data.shape[0],
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
grid,size = damask.util.coordGridAndSize(table.data[:,9:12])
N = grid.prod()
if N != len(table.data): errors.append('data count {} does not match grid {}x{}x{}.'.format(N,*grid))
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ process data ------------------------------------------
F_fourier = np.fft.rfftn(table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),axes=(0,1,2)) # perform transform only once...
fluctDisplacement = displacementFluctFFT(F_fourier,grid,size,options.nodal,transformed=True)
avgDisplacement = displacementAvgFFT (F_fourier,grid,size,options.nodal,transformed=True)
# ------------------------------------------ assemble header ---------------------------------------
F = table.get_array(options.f).reshape(np.append(grid[::-1],(3,3)))
if options.nodal: if options.nodal:
table.info_clear() table = damask.Table(damask.grid_filters.coord0_node(grid[::-1],size[::-1]).reshape((-1,3)),
table.labels_clear() {'pos':(3,)})
table.add_array('avg({}).{}'.format(options.f,options.pos),
damask.grid_filters.displacement_avg_node(size[::-1],F).reshape((-1,3)),
scriptID+' '+' '.join(sys.argv[1:]))
table.add_array('fluct({}).{}'.format(options.f,options.pos),
damask.grid_filters.displacement_fluct_node(size[::-1],F).reshape((-1,3)),
scriptID+' '+' '.join(sys.argv[1:]))
table.to_ASCII(sys.stdout if name is None else os.path.splitext(name)[0]+'_nodal.txt')
else:
table.add_array('avg({}).{}'.format(options.f,options.pos),
damask.grid_filters.displacement_avg_cell(size[::-1],F).reshape((-1,3)),
scriptID+' '+' '.join(sys.argv[1:]))
table.add_array('fluct({}).{}'.format(options.f,options.pos),
damask.grid_filters.displacement_fluct_cell(size[::-1],F).reshape((-1,3)),
scriptID+' '+' '.join(sys.argv[1:]))
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.to_ASCII(sys.stdout if name is None else name)
table.labels_append((['{}_pos' .format(i+1) for i in range(3)] if options.nodal else []) +
['{}_avg({}).{}' .format(i+1,options.defgrad,options.pos) for i in range(3)] +
['{}_fluct({}).{}'.format(i+1,options.defgrad,options.pos) for i in range(3)] )
table.head_write()
# ------------------------------------------ output data -------------------------------------------
Zrange = np.linspace(0,size[2],1+grid[2]) if options.nodal else range(grid[2])
Yrange = np.linspace(0,size[1],1+grid[1]) if options.nodal else range(grid[1])
Xrange = np.linspace(0,size[0],1+grid[0]) if options.nodal else range(grid[0])
for i,z in enumerate(Zrange):
for j,y in enumerate(Yrange):
for k,x in enumerate(Xrange):
if options.nodal: table.data_clear()
else: table.data_read()
table.data_append([x,y,z] if options.nodal else [])
table.data_append(list( avgDisplacement[i,j,k,:]))
table.data_append(list(fluctDisplacement[i,j,k,:]))
table.data_write()
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables

View File

@ -102,14 +102,21 @@ def displacement_fluct_node(size,F):
def displacement_avg_node(size,F): def displacement_avg_node(size,F):
F_avg = np.average(F,axis=(0,1,2)) F_avg = np.average(F,axis=(0,1,2))
return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),coord0_node(F.shape[0:3],size)) return np.einsum('ml,ijkl->ijkm',F_avg-np.eye(3),coord0_node(F.shape[:3],size))
def cell_2_node(cell_data): def cell_2_node(cell_data):
"""Interpolate cell data to nodal data.""" """Interpolate cell data to nodal data."""
n = ( cell_data + np.roll(cell_data,1,(0,1,2)) n = ( cell_data + np.roll(cell_data,1,(0,1,2))
+ np.roll(cell_data,1,(0,)) + np.roll(cell_data,1,(1,)) + np.roll(cell_data,1,(2,)) + np.roll(cell_data,1,(0,)) + np.roll(cell_data,1,(1,)) + np.roll(cell_data,1,(2,))
+ np.roll(cell_data,1,(0,1)) + np.roll(cell_data,1,(1,2)) + np.roll(cell_data,1,(2,0))) *0.125 + np.roll(cell_data,1,(0,1)) + np.roll(cell_data,1,(1,2)) + np.roll(cell_data,1,(2,0)))*0.125
return np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap') return np.pad(n,((0,1),(0,1),(0,1))+((0,0),)*len(cell_data.shape[3:]),mode='wrap')
def node_2_cell(node_data):
"""Interpolate nodal data to cell data."""
c = ( node_data + np.roll(node_data,1,(0,1,2))
+ np.roll(node_data,1,(0,)) + np.roll(node_data,1,(1,)) + np.roll(node_data,1,(2,))
+ np.roll(node_data,1,(0,1)) + np.roll(node_data,1,(1,2)) + np.roll(node_data,1,(2,0)))*0.125
return c[:-1,:-1,:-1]