Merge branch 'development' into typehints_grid
This commit is contained in:
commit
9a8e7c8445
|
@ -45,7 +45,7 @@ variables:
|
|||
MPI_INTEL: "MPI/Intel/2022.0.1/IntelMPI/2021.5.0"
|
||||
# ++++++++++++ PETSc ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
PETSC_GNU: "Libraries/PETSc/3.16.1/GNU-10-OpenMPI-4.1.1"
|
||||
PETSC_INTELLLVM: "Libraries/PETSc/3.16.2/oneAPI-2022.0.1-IntelMPI-2021.5.0"
|
||||
PETSC_INTELLLVM: "Libraries/PETSc/3.16.3/oneAPI-2022.0.1-IntelMPI-2021.5.0"
|
||||
PETSC_INTEL: "Libraries/PETSc/3.16.2/Intel-2022.0.1-IntelMPI-2021.5.0"
|
||||
# ++++++++++++ MSC Marc +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
||||
MSC: "FEM/MSC/2021.3.1"
|
||||
|
|
|
@ -88,16 +88,12 @@ else()
|
|||
message(FATAL_ERROR "Compiler type(CMAKE_Fortran_COMPILER_ID) not recognized")
|
||||
endif()
|
||||
|
||||
file(STRINGS "$ENV{PETSC_DIR}/$ENV{PETSC_ARCH}/lib/petsc/conf/petscvariables" PETSC_EXTERNAL_LIB REGEX "PETSC_WITH_EXTERNAL_LIB = .*$?")
|
||||
string(REGEX MATCHALL "-[lLW]([^\" ]+)" PETSC_EXTERNAL_LIB "${PETSC_EXTERNAL_LIB}")
|
||||
list(REMOVE_DUPLICATES PETSC_EXTERNAL_LIB)
|
||||
string(REPLACE ";" " " PETSC_EXTERNAL_LIB "${PETSC_EXTERNAL_LIB}")
|
||||
file(STRINGS "$ENV{PETSC_DIR}/$ENV{PETSC_ARCH}/lib/petsc/conf/petscvariables" PETSC_EXTERNAL_LIB REGEX "PETSC_EXTERNAL_LIB_BASIC = .*$?")
|
||||
string(REPLACE "PETSC_EXTERNAL_LIB_BASIC = " "" PETSC_EXTERNAL_LIB "${PETSC_EXTERNAL_LIB}")
|
||||
message("PETSC_EXTERNAL_LIB:\n${PETSC_EXTERNAL_LIB}\n")
|
||||
|
||||
file(STRINGS "$ENV{PETSC_DIR}/$ENV{PETSC_ARCH}/lib/petsc/conf/petscvariables" PETSC_INCLUDES REGEX "PETSC_FC_INCLUDES = .*$?")
|
||||
string(REGEX MATCHALL "-I([^\" ]+)" PETSC_INCLUDES "${PETSC_INCLUDES}")
|
||||
list(REMOVE_DUPLICATES PETSC_INCLUDES)
|
||||
string(REPLACE ";" " " PETSC_INCLUDES "${PETSC_INCLUDES}")
|
||||
string(REPLACE "PETSC_FC_INCLUDES = " "" PETSC_INCLUDES "${PETSC_INCLUDES}")
|
||||
message("PETSC_INCLUDES:\n${PETSC_INCLUDES}\n")
|
||||
|
||||
set(CMAKE_Fortran_FLAGS_${CMAKE_BUILD_TYPE} "${BUILDCMD_PRE} ${OPENMP_FLAGS} ${STANDARD_CHECK} ${OPTIMIZATION_FLAGS} ${COMPILE_FLAGS} ${PRECISION_FLAGS}")
|
||||
|
@ -109,7 +105,7 @@ if(CMAKE_BUILD_TYPE STREQUAL "DEBUG")
|
|||
endif()
|
||||
|
||||
set(CMAKE_Fortran_FLAGS_${CMAKE_BUILD_TYPE} "${CMAKE_Fortran_FLAGS_${CMAKE_BUILD_TYPE}} ${PETSC_INCLUDES} ${BUILDCMD_POST}")
|
||||
set(CMAKE_Fortran_LINK_EXECUTABLE "${CMAKE_Fortran_LINK_EXECUTABLE} <OBJECTS> -o <TARGET> <LINK_LIBRARIES> ${PETSC_EXTERNAL_LIB} -lz ${BUILDCMD_POST}")
|
||||
set(CMAKE_Fortran_LINK_EXECUTABLE "${CMAKE_Fortran_LINK_EXECUTABLE} <OBJECTS> -o <TARGET> <LINK_LIBRARIES> -L${PETSC_LIBRARY_DIRS} -lpetsc ${PETSC_EXTERNAL_LIB} -lz ${BUILDCMD_POST}")
|
||||
|
||||
message("Fortran Compiler Flags:\n${CMAKE_Fortran_FLAGS_${CMAKE_BUILD_TYPE}}\n")
|
||||
message("C Compiler Flags:\n${CMAKE_C_FLAGS_${CMAKE_BUILD_TYPE}}\n")
|
||||
|
|
6
Makefile
6
Makefile
|
@ -10,14 +10,12 @@ all: grid mesh
|
|||
.PHONY: grid
|
||||
grid:
|
||||
@cmake -B build/grid -DDAMASK_SOLVER=grid -DCMAKE_INSTALL_PREFIX=${PWD} -DCMAKE_BUILD_TYPE=${BUILD_TYPE} -DBUILDCMD_POST=${BUILDCMD_POST} -DBUILDCMD_PRE=${BUILDCMD_PRE} -DOPTIMIZATION=${OPTIMIZATION} -DOPENMP=${OPENMP}
|
||||
@cmake --build build/grid --parallel
|
||||
@cmake --install build/grid
|
||||
@cmake --build build/grid --parallel --target install
|
||||
|
||||
.PHONY: mesh
|
||||
mesh:
|
||||
@cmake -B build/mesh -DDAMASK_SOLVER=mesh -DCMAKE_INSTALL_PREFIX=${PWD} -DCMAKE_BUILD_TYPE=${BUILD_TYPE} -DBUILDCMD_POST=${BUILDCMD_POST} -DBUILDCMD_PRE=${BUILDCMD_PRE} -DOPTIMIZATION=${OPTIMIZATION} -DOPENMP=${OPENMP}
|
||||
@cmake --build build/mesh --parallel
|
||||
@cmake --install build/mesh
|
||||
@cmake --build build/mesh --parallel --target install
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
|
|
|
@ -67,9 +67,7 @@ os.system(f'xvfb-run -a {executable} -compile {menu_file}')
|
|||
|
||||
print('setting file access rights...')
|
||||
|
||||
files = (glob.glob(str(marc_root/f'marc{marc_version}/tools/*_damask*')) +
|
||||
glob.glob(str(marc_root/f'mentat{marc_version}/bin/kill[4-6]')) +
|
||||
glob.glob(str(marc_root/f'mentat{marc_version}/bin/submit[4-6]')))
|
||||
|
||||
for file in files:
|
||||
for file in (glob.glob(str(marc_root/f'marc{marc_version}/tools/*_damask*')) +
|
||||
glob.glob(str(marc_root/f'mentat{marc_version}/bin/kill[4-6]')) +
|
||||
glob.glob(str(marc_root/f'mentat{marc_version}/bin/submit[4-6]'))):
|
||||
os.chmod(file , 0o755)
|
||||
|
|
|
@ -1,71 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import sys
|
||||
from io import StringIO
|
||||
from optparse import OptionParser
|
||||
|
||||
import damask
|
||||
|
||||
|
||||
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
||||
scriptID = ' '.join([scriptName,damask.version])
|
||||
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(usage='%prog options [ASCIItable(s)]', description = """
|
||||
Add displacments resulting from deformation gradient field.
|
||||
Operates on periodic three-dimensional x,y,z-ordered data sets.
|
||||
Outputs at cell centers or cell nodes (into separate file).
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-f',
|
||||
'--defgrad',
|
||||
dest = 'f',
|
||||
metavar = 'string',
|
||||
help = 'label of deformation gradient [%default]')
|
||||
parser.add_option('-p',
|
||||
'--pos', '--position',
|
||||
dest = 'pos',
|
||||
metavar = 'string',
|
||||
help = 'label of coordinates [%default]')
|
||||
parser.add_option('--nodal',
|
||||
dest = 'nodal',
|
||||
action = 'store_true',
|
||||
help = 'output nodal (instead of cell-centered) displacements')
|
||||
|
||||
parser.set_defaults(f = 'f',
|
||||
pos = 'pos',
|
||||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
for name in filenames:
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
table = damask.Table.load(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
||||
grid,size,origin = damask.grid_filters.cellsSizeOrigin_coordinates0_point(table.get(options.pos))
|
||||
|
||||
F = table.get(options.f).reshape(tuple(grid)+(-1,),order='F').reshape(tuple(grid)+(3,3))
|
||||
if options.nodal:
|
||||
damask.Table(damask.grid_filters.coordinates0_node(grid,size).reshape(-1,3,order='F'),
|
||||
{'pos':(3,)})\
|
||||
.add('avg({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.displacement_avg_node(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))\
|
||||
.add('fluct({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.displacement_fluct_node(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))\
|
||||
.save((sys.stdout if name is None else os.path.splitext(name)[0]+'_nodal.txt'))
|
||||
else:
|
||||
table.add('avg({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.displacement_avg_point(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))\
|
||||
.add('fluct({}).{}'.format(options.f,options.pos),
|
||||
damask.grid_filters.displacement_fluct_point(size,F).reshape(-1,3,order='F'),
|
||||
scriptID+' '+' '.join(sys.argv[1:]))\
|
||||
.save((sys.stdout if name is None else name))
|
|
@ -1 +1 @@
|
|||
v3.0.0-alpha5-355-gc29428a60
|
||||
v3.0.0-alpha5-375-g76fe2d2b3
|
||||
|
|
|
@ -8,6 +8,7 @@ with open(_Path(__file__).parent/_Path('VERSION')) as _f:
|
|||
version = _re.sub(r'^v','',_f.readline().strip())
|
||||
__version__ = version
|
||||
|
||||
from . import _typehints # noqa
|
||||
from . import util # noqa
|
||||
from . import seeds # noqa
|
||||
from . import tensor # noqa
|
||||
|
|
|
@ -3,13 +3,9 @@ import json
|
|||
import functools
|
||||
import colorsys
|
||||
from pathlib import Path
|
||||
from typing import Sequence, Union, TextIO
|
||||
from typing import Union, TextIO
|
||||
|
||||
import numpy as np
|
||||
try:
|
||||
from numpy.typing import ArrayLike
|
||||
except ImportError:
|
||||
ArrayLike = Union[np.ndarray,Sequence[float]] # type: ignore
|
||||
import scipy.interpolate as interp
|
||||
import matplotlib as mpl
|
||||
if os.name == 'posix' and 'DISPLAY' not in os.environ:
|
||||
|
@ -18,6 +14,7 @@ import matplotlib.pyplot as plt
|
|||
from matplotlib import cm
|
||||
from PIL import Image
|
||||
|
||||
from ._typehints import FloatSequence, FileHandle
|
||||
from . import util
|
||||
from . import Table
|
||||
|
||||
|
@ -82,8 +79,8 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
|
||||
|
||||
@staticmethod
|
||||
def from_range(low: ArrayLike,
|
||||
high: ArrayLike,
|
||||
def from_range(low: FloatSequence,
|
||||
high: FloatSequence,
|
||||
name: str = 'DAMASK colormap',
|
||||
N: int = 256,
|
||||
model: str = 'rgb') -> 'Colormap':
|
||||
|
@ -197,7 +194,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
|
||||
|
||||
def at(self,
|
||||
fraction : Union[float,Sequence[float]]) -> np.ndarray:
|
||||
fraction : Union[float,FloatSequence]) -> np.ndarray:
|
||||
"""
|
||||
Interpolate color at fraction.
|
||||
|
||||
|
@ -229,7 +226,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
|
||||
def shade(self,
|
||||
field: np.ndarray,
|
||||
bounds: ArrayLike = None,
|
||||
bounds: FloatSequence = None,
|
||||
gap: float = None) -> Image:
|
||||
"""
|
||||
Generate PIL image of 2D field using colormap.
|
||||
|
@ -296,7 +293,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
|
||||
|
||||
def _get_file_handle(self,
|
||||
fname: Union[TextIO, str, Path, None],
|
||||
fname: Union[FileHandle, None],
|
||||
suffix: str = '') -> TextIO:
|
||||
"""
|
||||
Provide file handle.
|
||||
|
@ -323,7 +320,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
return fname
|
||||
|
||||
|
||||
def save_paraview(self, fname: Union[TextIO, str, Path] = None):
|
||||
def save_paraview(self, fname: FileHandle = None):
|
||||
"""
|
||||
Save as JSON file for use in Paraview.
|
||||
|
||||
|
@ -350,7 +347,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
fhandle.write('\n')
|
||||
|
||||
|
||||
def save_ASCII(self, fname: Union[TextIO, str, Path] = None):
|
||||
def save_ASCII(self, fname: FileHandle = None):
|
||||
"""
|
||||
Save as ASCII file.
|
||||
|
||||
|
@ -365,7 +362,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
t.save(self._get_file_handle(fname,'.txt'))
|
||||
|
||||
|
||||
def save_GOM(self, fname: Union[TextIO, str, Path] = None):
|
||||
def save_GOM(self, fname: FileHandle = None):
|
||||
"""
|
||||
Save as ASCII file for use in GOM Aramis.
|
||||
|
||||
|
@ -385,7 +382,7 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
self._get_file_handle(fname,'.legend').write(GOM_str)
|
||||
|
||||
|
||||
def save_gmsh(self, fname: Union[TextIO, str, Path] = None):
|
||||
def save_gmsh(self, fname: FileHandle = None):
|
||||
"""
|
||||
Save as ASCII file for use in gmsh.
|
||||
|
||||
|
|
|
@ -114,12 +114,13 @@ class Crystal():
|
|||
|
||||
def __repr__(self):
|
||||
"""Represent."""
|
||||
return '\n'.join([f'Crystal family {self.family}']
|
||||
+ ([] if self.lattice is None else [f'Bravais lattice {self.lattice}']+
|
||||
list(map(lambda x:f'{x[0]}: {x[1]:.5g}',
|
||||
zip(['a','b','c','α','β','γ',],
|
||||
self.parameters))))
|
||||
)
|
||||
family = f'Crystal family: {self.family}'
|
||||
return family if self.lattice is None else \
|
||||
'\n'.join([family,
|
||||
f'Bravais lattice: {self.lattice}',
|
||||
'a={:.5g}m, b={:.5g}m, c={:.5g}m'.format(*self.parameters[:3]),
|
||||
'α={:.5g}°, β={:.5g}°, γ={:.5g}°'.format(*np.degrees(self.parameters[3:]))])
|
||||
|
||||
|
||||
def __eq__(self,other):
|
||||
"""
|
||||
|
@ -378,7 +379,7 @@ class Crystal():
|
|||
"""
|
||||
_kinematics = {
|
||||
'cF': {
|
||||
'slip' :[np.array([
|
||||
'slip': [np.array([
|
||||
[+0,+1,-1, +1,+1,+1],
|
||||
[-1,+0,+1, +1,+1,+1],
|
||||
[+1,-1,+0, +1,+1,+1],
|
||||
|
@ -398,7 +399,7 @@ class Crystal():
|
|||
[+1,+0,-1, +1,+0,+1],
|
||||
[+0,+1,+1, +0,+1,-1],
|
||||
[+0,+1,-1, +0,+1,+1]])],
|
||||
'twin' :[np.array([
|
||||
'twin': [np.array([
|
||||
[-2, 1, 1, 1, 1, 1],
|
||||
[ 1,-2, 1, 1, 1, 1],
|
||||
[ 1, 1,-2, 1, 1, 1],
|
||||
|
@ -413,7 +414,7 @@ class Crystal():
|
|||
[-1, 1, 2, -1, 1,-1]])]
|
||||
},
|
||||
'cI': {
|
||||
'slip' :[np.array([
|
||||
'slip': [np.array([
|
||||
[+1,-1,+1, +0,+1,+1],
|
||||
[-1,-1,+1, +0,+1,+1],
|
||||
[+1,+1,+1, +0,-1,+1],
|
||||
|
@ -464,7 +465,7 @@ class Crystal():
|
|||
[+1,+1,+1, -3,+2,+1],
|
||||
[+1,+1,-1, +3,-2,+1],
|
||||
[+1,-1,+1, +3,+2,-1]])],
|
||||
'twin' :[np.array([
|
||||
'twin': [np.array([
|
||||
[-1, 1, 1, 2, 1, 1],
|
||||
[ 1, 1, 1, -2, 1, 1],
|
||||
[ 1, 1,-1, 2,-1, 1],
|
||||
|
@ -479,7 +480,7 @@ class Crystal():
|
|||
[ 1, 1, 1, 1, 1,-2]])]
|
||||
},
|
||||
'hP': {
|
||||
'slip' :[np.array([
|
||||
'slip': [np.array([
|
||||
[+2,-1,-1,+0, +0,+0,+0,+1],
|
||||
[-1,+2,-1,+0, +0,+0,+0,+1],
|
||||
[-1,-1,+2,+0, +0,+0,+0,+1]]),
|
||||
|
@ -514,7 +515,7 @@ class Crystal():
|
|||
[+1,+1,-2,+3, -1,-1,+2,+2],
|
||||
[-1,+2,-1,+3, +1,-2,+1,+2],
|
||||
[-2,+1,+1,+3, +2,-1,-1,+2]])],
|
||||
'twin' :[np.array([
|
||||
'twin': [np.array([
|
||||
[-1, 0, 1, 1, 1, 0,-1, 2], # shear = (3-(c/a)^2)/(sqrt(3) c/a) <-10.1>{10.2}
|
||||
[ 0,-1, 1, 1, 0, 1,-1, 2],
|
||||
[ 1,-1, 0, 1, -1, 1, 0, 2],
|
||||
|
@ -542,7 +543,74 @@ class Crystal():
|
|||
[-1,-1, 2,-3, -1,-1, 2, 2],
|
||||
[ 1,-2, 1,-3, 1,-2, 1, 2],
|
||||
[ 2,-1,-1,-3, 2,-1,-1, 2]])]
|
||||
},
|
||||
},
|
||||
'tI': {
|
||||
'slip': [np.array([
|
||||
[+0,+0,+1, +1,+0,+0],
|
||||
[+0,+0,+1, +0,+1,+0]]),
|
||||
np.array([
|
||||
[+0,+0,+1, +1,+1,+0],
|
||||
[+0,+0,+1, -1,+1,+0]]),
|
||||
np.array([
|
||||
[+0,+1,+0, +1,+0,+0],
|
||||
[+1,+0,+0, +0,+1,+0]]),
|
||||
np.array([
|
||||
[+1,-1,+1, +1,+1,+0],
|
||||
[+1,-1,-1, +1,+1,+0],
|
||||
[-1,-1,-1, -1,+1,+0],
|
||||
[-1,-1,+1, -1,+1,+0]]),
|
||||
np.array([
|
||||
[+1,-1,+0, +1,+1,+0],
|
||||
[+1,+1,+0, +1,-1,+0]]),
|
||||
np.array([
|
||||
[+0,+1,+1, +1,+0,+0],
|
||||
[+0,-1,+1, +1,+0,+0],
|
||||
[-1,+0,+1, +0,+1,+0],
|
||||
[+1,+0,+1, +0,+1,+0]]),
|
||||
np.array([
|
||||
[+0,+1,+0, +0,+0,+1],
|
||||
[+1,+0,+0, +0,+0,+1]]),
|
||||
np.array([
|
||||
[+1,+1,+0, +0,+0,+1],
|
||||
[-1,+1,+0, +0,+0,+1]]),
|
||||
np.array([
|
||||
[+0,+1,-1, +0,+1,+1],
|
||||
[+0,-1,-1, +0,-1,+1],
|
||||
[-1,+0,-1, -1,+0,+1],
|
||||
[+1,+0,-1, +1,+0,+1]]),
|
||||
np.array([
|
||||
[+1,-1,+1, +0,+1,+1],
|
||||
[+1,+1,-1, +0,+1,+1],
|
||||
[+1,+1,+1, +0,+1,-1],
|
||||
[-1,+1,+1, +0,+1,-1],
|
||||
[+1,-1,-1, +1,+0,+1],
|
||||
[-1,-1,+1, +1,+0,+1],
|
||||
[+1,+1,+1, +1,+0,-1],
|
||||
[+1,-1,+1, +1,+0,-1]]),
|
||||
np.array([
|
||||
[+1,+0,+0, +0,+1,+1],
|
||||
[+1,+0,+0, +0,+1,-1],
|
||||
[+0,+1,+0, +1,+0,+1],
|
||||
[+0,+1,+0, +1,+0,-1]]),
|
||||
np.array([
|
||||
[+0,+1,-1, +2,+1,+1],
|
||||
[+0,-1,-1, +2,-1,+1],
|
||||
[+1,+0,-1, +1,+2,+1],
|
||||
[-1,+0,-1, -1,+2,+1],
|
||||
[+0,+1,-1, -2,+1,+1],
|
||||
[+0,-1,-1, -2,-1,+1],
|
||||
[-1,+0,-1, -1,-2,+1],
|
||||
[+1,+0,-1, +1,-2,+1]]),
|
||||
np.array([
|
||||
[-1,+1,+1, +2,+1,+1],
|
||||
[-1,-1,+1, +2,-1,+1],
|
||||
[+1,-1,+1, +1,+2,+1],
|
||||
[-1,-1,+1, -1,+2,+1],
|
||||
[+1,+1,+1, -2,+1,+1],
|
||||
[+1,-1,+1, -2,-1,+1],
|
||||
[-1,+1,+1, -1,-2,+1],
|
||||
[+1,+1,+1, +1,-2,+1]])]
|
||||
}
|
||||
}
|
||||
master = _kinematics[self.lattice][mode]
|
||||
if self.lattice == 'hP':
|
||||
|
|
|
@ -514,6 +514,17 @@ class Orientation(Rotation,Crystal):
|
|||
[ 0.07359167 -0.36505797 0.92807163]]
|
||||
Bunge Eulers / deg: (11.40, 21.86, 0.60)
|
||||
|
||||
Plot a sample from the Mackenzie distribution.
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> import damask
|
||||
>>> N = 10000
|
||||
>>> a = damask.Orientation.from_random(shape=N,family='cubic')
|
||||
>>> b = damask.Orientation.from_random(shape=N,family='cubic')
|
||||
>>> d = a.disorientation(b).as_axis_angle(degrees=True,pair=True)[1]
|
||||
>>> plt.hist(d,25)
|
||||
>>> plt.show()
|
||||
|
||||
"""
|
||||
if self.family != other.family:
|
||||
raise NotImplementedError('disorientation between different crystal families')
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
"""Functionality for typehints."""
|
||||
|
||||
from typing import Sequence, Union, TextIO
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
FloatSequence = Union[np.ndarray,Sequence[float]]
|
||||
IntSequence = Union[np.ndarray,Sequence[int]]
|
||||
FileHandle = Union[TextIO, str, Path]
|
|
@ -12,21 +12,23 @@ the following operations are required for tensorial data:
|
|||
|
||||
"""
|
||||
|
||||
from typing import Sequence, Tuple, Union
|
||||
from typing import Tuple as _Tuple
|
||||
|
||||
from scipy import spatial as _spatial
|
||||
import numpy as _np
|
||||
|
||||
from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence
|
||||
|
||||
def _ks(size: _np.ndarray, cells: Union[_np.ndarray,Sequence[int]], first_order: bool = False) -> _np.ndarray:
|
||||
|
||||
def _ks(size: _FloatSequence, cells: _IntSequence, first_order: bool = False) -> _np.ndarray:
|
||||
"""
|
||||
Get wave numbers operator.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
cells : numpy.ndarray of shape (3)
|
||||
cells : sequence of int, len (3)
|
||||
Number of cells.
|
||||
first_order : bool, optional
|
||||
Correction for first order derivatives, defaults to False.
|
||||
|
@ -45,20 +47,20 @@ def _ks(size: _np.ndarray, cells: Union[_np.ndarray,Sequence[int]], first_order:
|
|||
return _np.stack(_np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij'), axis=-1)
|
||||
|
||||
|
||||
def curl(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
||||
def curl(size: _FloatSequence, f: _np.ndarray) -> _np.ndarray:
|
||||
u"""
|
||||
Calculate curl of a vector or tensor field in Fourier space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
f : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
|
||||
f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
|
||||
Periodic field of which the curl is calculated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
∇ × f : numpy.ndarray
|
||||
∇ × f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
|
||||
Curl of f.
|
||||
|
||||
"""
|
||||
|
@ -76,20 +78,20 @@ def curl(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
|||
return _np.fft.irfftn(curl_,axes=(0,1,2),s=f.shape[:3])
|
||||
|
||||
|
||||
def divergence(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
||||
def divergence(size: _FloatSequence, f: _np.ndarray) -> _np.ndarray:
|
||||
u"""
|
||||
Calculate divergence of a vector or tensor field in Fourier space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
f : numpy.ndarray of shape (:,:,:,3) or (:,:,:,3,3)
|
||||
f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
|
||||
Periodic field of which the divergence is calculated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
∇ · f : numpy.ndarray
|
||||
∇ · f : numpy.ndarray, shape (:,:,:,1) or (:,:,:,3)
|
||||
Divergence of f.
|
||||
|
||||
"""
|
||||
|
@ -103,20 +105,20 @@ def divergence(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
|||
return _np.fft.irfftn(div_,axes=(0,1,2),s=f.shape[:3])
|
||||
|
||||
|
||||
def gradient(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
||||
def gradient(size: _FloatSequence, f: _np.ndarray) -> _np.ndarray:
|
||||
u"""
|
||||
Calculate gradient of a scalar or vector fieldin Fourier space.
|
||||
Calculate gradient of a scalar or vector field in Fourier space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
f : numpy.ndarray of shape (:,:,:,1) or (:,:,:,3)
|
||||
f : numpy.ndarray, shape (:,:,:,1) or (:,:,:,3)
|
||||
Periodic field of which the gradient is calculated.
|
||||
|
||||
Returns
|
||||
-------
|
||||
∇ f : numpy.ndarray
|
||||
∇ f : numpy.ndarray, shape (:,:,:,3) or (:,:,:,3,3)
|
||||
Divergence of f.
|
||||
|
||||
"""
|
||||
|
@ -130,29 +132,30 @@ def gradient(size: _np.ndarray, f: _np.ndarray) -> _np.ndarray:
|
|||
return _np.fft.irfftn(grad_,axes=(0,1,2),s=f.shape[:3])
|
||||
|
||||
|
||||
def coordinates0_point(cells: Union[_np.ndarray, Sequence[int]],
|
||||
size: Union[_np.ndarray, Sequence[float]],
|
||||
origin: Union[_np.ndarray, Sequence[float]] = _np.zeros(3)) -> _np.ndarray:
|
||||
def coordinates0_point(cells: _IntSequence,
|
||||
size: _FloatSequence,
|
||||
origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Cell center positions (undeformed).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cells : numpy.ndarray of shape (3)
|
||||
cells : sequence of int, len (3)
|
||||
Number of cells.
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
origin : numpy.ndarray, optional
|
||||
origin : sequence of float, len(3), optional
|
||||
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_p_0 : numpy.ndarray
|
||||
x_p_0 : numpy.ndarray, shape (:,:,:,3)
|
||||
Undeformed cell center coordinates.
|
||||
|
||||
"""
|
||||
start = _np.array(origin) + size/_np.array(cells)*.5
|
||||
end = _np.array(origin) + _np.array(size) - size/_np.array(cells)*.5
|
||||
size_ = _np.array(size,float)
|
||||
start = origin + size_/_np.array(cells,int)*.5
|
||||
end = origin + size_ - size_/_np.array(cells,int)*.5
|
||||
|
||||
return _np.stack(_np.meshgrid(_np.linspace(start[0],end[0],cells[0]),
|
||||
_np.linspace(start[1],end[1],cells[1]),
|
||||
|
@ -160,24 +163,24 @@ def coordinates0_point(cells: Union[_np.ndarray, Sequence[int]],
|
|||
axis = -1)
|
||||
|
||||
|
||||
def displacement_fluct_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def displacement_fluct_point(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Cell center displacement field from fluctuation part of the deformation gradient field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u_p_fluct : numpy.ndarray
|
||||
u_p_fluct : numpy.ndarray, shape (:,:,:,3)
|
||||
Fluctuating part of the cell center displacements.
|
||||
|
||||
"""
|
||||
integrator = 0.5j*size/_np.pi
|
||||
integrator = 0.5j*_np.array(size,float)/_np.pi
|
||||
|
||||
k_s = _ks(size,F.shape[:3],False)
|
||||
k_s_squared = _np.einsum('...l,...l',k_s,k_s)
|
||||
|
@ -192,20 +195,20 @@ def displacement_fluct_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
|||
return _np.fft.irfftn(displacement,axes=(0,1,2),s=F.shape[:3])
|
||||
|
||||
|
||||
def displacement_avg_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def displacement_avg_point(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Cell center displacement field from average part of the deformation gradient field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u_p_avg : numpy.ndarray
|
||||
u_p_avg : numpy.ndarray, shape (:,:,:,3)
|
||||
Average part of the cell center displacements.
|
||||
|
||||
"""
|
||||
|
@ -213,42 +216,42 @@ def displacement_avg_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
|||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_point(F.shape[:3],size))
|
||||
|
||||
|
||||
def displacement_point(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def displacement_point(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Cell center displacement field from deformation gradient field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u_p : numpy.ndarray
|
||||
u_p : numpy.ndarray, shape (:,:,:,3)
|
||||
Cell center displacements.
|
||||
|
||||
"""
|
||||
return displacement_avg_point(size,F) + displacement_fluct_point(size,F)
|
||||
|
||||
|
||||
def coordinates_point(size: _np.ndarray, F: _np.ndarray, origin: _np.ndarray = _np.zeros(3)) -> _np.ndarray:
|
||||
def coordinates_point(size: _FloatSequence, F: _np.ndarray, origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Cell center positions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
origin : numpy.ndarray of shape (3), optional
|
||||
origin : sequence of float, len(3), optional
|
||||
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_p : numpy.ndarray
|
||||
x_p : numpy.ndarray, shape (:,:,:,3)
|
||||
Cell center coordinates.
|
||||
|
||||
"""
|
||||
|
@ -256,14 +259,14 @@ def coordinates_point(size: _np.ndarray, F: _np.ndarray, origin: _np.ndarray = _
|
|||
|
||||
|
||||
def cellsSizeOrigin_coordinates0_point(coordinates0: _np.ndarray,
|
||||
ordered: bool = True) -> Tuple[_np.ndarray,_np.ndarray,_np.ndarray]:
|
||||
ordered: bool = True) -> _Tuple[_np.ndarray,_np.ndarray,_np.ndarray]:
|
||||
"""
|
||||
Return grid 'DNA', i.e. cells, size, and origin from 1D array of point positions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
coordinates0 : numpy.ndarray of shape (:,3)
|
||||
Undeformed cell coordinates.
|
||||
coordinates0 : numpy.ndarray, shape (:,3)
|
||||
Undeformed cell center coordinates.
|
||||
ordered : bool, optional
|
||||
Expect coordinates0 data to be ordered (x fast, z slow).
|
||||
Defaults to True.
|
||||
|
@ -277,7 +280,7 @@ def cellsSizeOrigin_coordinates0_point(coordinates0: _np.ndarray,
|
|||
coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
|
||||
mincorner = _np.array(list(map(min,coords)))
|
||||
maxcorner = _np.array(list(map(max,coords)))
|
||||
cells = _np.array(list(map(len,coords)),'i')
|
||||
cells = _np.array(list(map(len,coords)),int)
|
||||
size = cells/_np.maximum(cells-1,1) * (maxcorner-mincorner)
|
||||
delta = size/cells
|
||||
origin = mincorner - delta*.5
|
||||
|
@ -305,24 +308,24 @@ def cellsSizeOrigin_coordinates0_point(coordinates0: _np.ndarray,
|
|||
return (cells,size,origin)
|
||||
|
||||
|
||||
def coordinates0_node(cells: Union[_np.ndarray, Sequence[int]],
|
||||
size: Union[_np.ndarray, Sequence[int]],
|
||||
origin: Union[_np.ndarray, Sequence[int]] = _np.zeros(3)) -> _np.ndarray:
|
||||
def coordinates0_node(cells: _IntSequence,
|
||||
size: _FloatSequence,
|
||||
origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Nodal positions (undeformed).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cells : numpy.ndarray of shape (3)
|
||||
cells : sequence of int, len (3)
|
||||
Number of cells.
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
origin : numpy.ndarray of shape (3), optional
|
||||
origin : sequence of float, len(3), optional
|
||||
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_n_0 : numpy.ndarray
|
||||
x_n_0 : numpy.ndarray, shape (:,:,:,3)
|
||||
Undeformed nodal coordinates.
|
||||
|
||||
"""
|
||||
|
@ -332,40 +335,40 @@ def coordinates0_node(cells: Union[_np.ndarray, Sequence[int]],
|
|||
axis = -1)
|
||||
|
||||
|
||||
def displacement_fluct_node(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def displacement_fluct_node(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Nodal displacement field from fluctuation part of the deformation gradient field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u_n_fluct : numpy.ndarray
|
||||
u_n_fluct : numpy.ndarray, shape (:,:,:,3)
|
||||
Fluctuating part of the nodal displacements.
|
||||
|
||||
"""
|
||||
return point_to_node(displacement_fluct_point(size,F))
|
||||
|
||||
|
||||
def displacement_avg_node(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def displacement_avg_node(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Nodal displacement field from average part of the deformation gradient field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u_n_avg : numpy.ndarray
|
||||
u_n_avg : numpy.ndarray, shape (:,:,:,3)
|
||||
Average part of the nodal displacements.
|
||||
|
||||
"""
|
||||
|
@ -373,42 +376,42 @@ def displacement_avg_node(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
|||
return _np.einsum('ml,ijkl->ijkm',F_avg - _np.eye(3),coordinates0_node(F.shape[:3],size))
|
||||
|
||||
|
||||
def displacement_node(size: _np.ndarray, F: _np.ndarray) -> _np.ndarray:
|
||||
def displacement_node(size: _FloatSequence, F: _np.ndarray) -> _np.ndarray:
|
||||
"""
|
||||
Nodal displacement field from deformation gradient field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
u_p : numpy.ndarray
|
||||
u_p : numpy.ndarray, shape (:,:,:,3)
|
||||
Nodal displacements.
|
||||
|
||||
"""
|
||||
return displacement_avg_node(size,F) + displacement_fluct_node(size,F)
|
||||
|
||||
|
||||
def coordinates_node(size: _np.ndarray, F: _np.ndarray, origin: _np.ndarray = _np.zeros(3)) -> _np.ndarray:
|
||||
def coordinates_node(size: _FloatSequence, F: _np.ndarray, origin: _FloatSequence = _np.zeros(3)) -> _np.ndarray:
|
||||
"""
|
||||
Nodal positions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the periodic field.
|
||||
F : numpy.ndarray
|
||||
F : numpy.ndarray, shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
origin : numpy.ndarray of shape (3), optional
|
||||
origin : sequence of float, len(3), optional
|
||||
Physical origin of the periodic field. Defaults to [0.0,0.0,0.0].
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_n : numpy.ndarray
|
||||
x_n : numpy.ndarray, shape (:,:,:,3)
|
||||
Nodal coordinates.
|
||||
|
||||
"""
|
||||
|
@ -416,13 +419,13 @@ def coordinates_node(size: _np.ndarray, F: _np.ndarray, origin: _np.ndarray = _n
|
|||
|
||||
|
||||
def cellsSizeOrigin_coordinates0_node(coordinates0: _np.ndarray,
|
||||
ordered: bool = True) -> Tuple[_np.ndarray,_np.ndarray,_np.ndarray]:
|
||||
ordered: bool = True) -> _Tuple[_np.ndarray,_np.ndarray,_np.ndarray]:
|
||||
"""
|
||||
Return grid 'DNA', i.e. cells, size, and origin from 1D array of nodal positions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
coordinates0 : numpy.ndarray of shape (:,3)
|
||||
coordinates0 : numpy.ndarray, shape (:,3)
|
||||
Undeformed nodal coordinates.
|
||||
ordered : bool, optional
|
||||
Expect coordinates0 data to be ordered (x fast, z slow).
|
||||
|
@ -437,7 +440,7 @@ def cellsSizeOrigin_coordinates0_node(coordinates0: _np.ndarray,
|
|||
coords = [_np.unique(coordinates0[:,i]) for i in range(3)]
|
||||
mincorner = _np.array(list(map(min,coords)))
|
||||
maxcorner = _np.array(list(map(max,coords)))
|
||||
cells = _np.array(list(map(len,coords)),'i') - 1
|
||||
cells = _np.array(list(map(len,coords)),int) - 1
|
||||
size = maxcorner-mincorner
|
||||
origin = mincorner
|
||||
|
||||
|
@ -463,12 +466,12 @@ def point_to_node(cell_data: _np.ndarray) -> _np.ndarray:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
cell_data : numpy.ndarray of shape (:,:,:,...)
|
||||
cell_data : numpy.ndarray, shape (:,:,:,...)
|
||||
Data defined on the cell centers of a periodic grid.
|
||||
|
||||
Returns
|
||||
-------
|
||||
node_data : numpy.ndarray of shape (:,:,:,...)
|
||||
node_data : numpy.ndarray, shape (:,:,:,...)
|
||||
Data defined on the nodes of a periodic grid.
|
||||
|
||||
"""
|
||||
|
@ -485,12 +488,12 @@ def node_to_point(node_data: _np.ndarray) -> _np.ndarray:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
node_data : numpy.ndarray of shape (:,:,:,...)
|
||||
node_data : numpy.ndarray, shape (:,:,:,...)
|
||||
Data defined on the nodes of a periodic grid.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cell_data : numpy.ndarray of shape (:,:,:,...)
|
||||
cell_data : numpy.ndarray, shape (:,:,:,...)
|
||||
Data defined on the cell centers of a periodic grid.
|
||||
|
||||
"""
|
||||
|
@ -507,7 +510,7 @@ def coordinates0_valid(coordinates0: _np.ndarray) -> bool:
|
|||
|
||||
Parameters
|
||||
----------
|
||||
coordinates0 : numpy.ndarray
|
||||
coordinates0 : numpy.ndarray, shape (:,3)
|
||||
Array of undeformed cell coordinates.
|
||||
|
||||
Returns
|
||||
|
@ -523,17 +526,17 @@ def coordinates0_valid(coordinates0: _np.ndarray) -> bool:
|
|||
return False
|
||||
|
||||
|
||||
def regrid(size: _np.ndarray, F: _np.ndarray, cells: Union[_np.ndarray,Sequence[int]]) -> _np.ndarray:
|
||||
def regrid(size: _FloatSequence, F: _np.ndarray, cells: _IntSequence) -> _np.ndarray:
|
||||
"""
|
||||
Return mapping from coordinates in deformed configuration to a regular grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size.
|
||||
F : numpy.ndarray of shape (:,:,:,3,3)
|
||||
F : numpy.ndarray, shape (:,:,:,3,3), shape (:,:,:,3,3)
|
||||
Deformation gradient field.
|
||||
cells : numpy.ndarray of shape (3)
|
||||
cells : sequence of int, len (3)
|
||||
Cell count along x,y,z of remapping grid.
|
||||
|
||||
"""
|
||||
|
|
|
@ -5,7 +5,7 @@ All routines operate on numpy.ndarrays of shape (...,3,3).
|
|||
|
||||
"""
|
||||
|
||||
from typing import Sequence
|
||||
from typing import Sequence as _Sequence
|
||||
|
||||
import numpy as _np
|
||||
|
||||
|
@ -243,7 +243,7 @@ def stretch_right(T: _np.ndarray) -> _np.ndarray:
|
|||
return _polar_decomposition(T,'U')[0]
|
||||
|
||||
|
||||
def _polar_decomposition(T: _np.ndarray, requested: Sequence[str]) -> tuple:
|
||||
def _polar_decomposition(T: _np.ndarray, requested: _Sequence[str]) -> tuple:
|
||||
"""
|
||||
Perform singular value decomposition.
|
||||
|
||||
|
|
|
@ -1,25 +1,27 @@
|
|||
"""Functionality for generation of seed points for Voronoi or Laguerre tessellation."""
|
||||
|
||||
from typing import Sequence,Tuple
|
||||
from typing import Tuple as _Tuple
|
||||
|
||||
from scipy import spatial as _spatial
|
||||
import numpy as _np
|
||||
|
||||
from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence
|
||||
from . import util as _util
|
||||
from . import grid_filters as _grid_filters
|
||||
|
||||
|
||||
def from_random(size: _np.ndarray, N_seeds: int, cells: _np.ndarray = None, rng_seed=None) -> _np.ndarray:
|
||||
def from_random(size: _FloatSequence, N_seeds: int, cells: _IntSequence = None,
|
||||
rng_seed=None) -> _np.ndarray:
|
||||
"""
|
||||
Place seeds randomly in space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the seeding domain.
|
||||
N_seeds : int
|
||||
Number of seeds.
|
||||
cells : numpy.ndarray of shape (3), optional.
|
||||
cells : sequence of int, len (3), optional.
|
||||
If given, ensures that each seed results in a grain when a standard Voronoi
|
||||
tessellation is performed using the given grid resolution (i.e. size/cells).
|
||||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||||
|
@ -28,29 +30,30 @@ def from_random(size: _np.ndarray, N_seeds: int, cells: _np.ndarray = None, rng_
|
|||
|
||||
Returns
|
||||
-------
|
||||
coords : numpy.ndarray of shape (N_seeds,3)
|
||||
coords : numpy.ndarray, shape (N_seeds,3)
|
||||
Seed coordinates in 3D space.
|
||||
|
||||
"""
|
||||
size_ = _np.array(size,float)
|
||||
rng = _np.random.default_rng(rng_seed)
|
||||
if cells is None:
|
||||
coords = rng.random((N_seeds,3)) * size
|
||||
coords = rng.random((N_seeds,3)) * size_
|
||||
else:
|
||||
grid_coords = _grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F')
|
||||
coords = grid_coords[rng.choice(_np.prod(cells),N_seeds, replace=False)] \
|
||||
+ _np.broadcast_to(size/cells,(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble without leaving cells
|
||||
+ _np.broadcast_to(size_/_np.array(cells,int),(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble w/o leaving grid
|
||||
|
||||
return coords
|
||||
|
||||
|
||||
def from_Poisson_disc(size: _np.ndarray, N_seeds: int, N_candidates: int, distance: float,
|
||||
def from_Poisson_disc(size: _FloatSequence, N_seeds: int, N_candidates: int, distance: float,
|
||||
periodic: bool = True, rng_seed=None) -> _np.ndarray:
|
||||
"""
|
||||
Place seeds according to a Poisson disc distribution.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
size : numpy.ndarray of shape (3)
|
||||
size : sequence of float, len (3)
|
||||
Physical size of the seeding domain.
|
||||
N_seeds : int
|
||||
Number of seeds.
|
||||
|
@ -66,13 +69,13 @@ def from_Poisson_disc(size: _np.ndarray, N_seeds: int, N_candidates: int, distan
|
|||
|
||||
Returns
|
||||
-------
|
||||
coords : numpy.ndarray of shape (N_seeds,3)
|
||||
coords : numpy.ndarray, shape (N_seeds,3)
|
||||
Seed coordinates in 3D space.
|
||||
|
||||
"""
|
||||
rng = _np.random.default_rng(rng_seed)
|
||||
coords = _np.empty((N_seeds,3))
|
||||
coords[0] = rng.random(3) * size
|
||||
coords[0] = rng.random(3) * _np.array(size,float)
|
||||
|
||||
s = 1
|
||||
i = 0
|
||||
|
@ -96,8 +99,8 @@ def from_Poisson_disc(size: _np.ndarray, N_seeds: int, N_candidates: int, distan
|
|||
return coords
|
||||
|
||||
|
||||
def from_grid(grid, selection: Sequence[int] = None,
|
||||
invert: bool = False, average: bool = False, periodic: bool = True) -> Tuple[_np.ndarray, _np.ndarray]:
|
||||
def from_grid(grid, selection: _IntSequence = None,
|
||||
invert: bool = False, average: bool = False, periodic: bool = True) -> _Tuple[_np.ndarray, _np.ndarray]:
|
||||
"""
|
||||
Create seeds from grid description.
|
||||
|
||||
|
@ -105,7 +108,7 @@ def from_grid(grid, selection: Sequence[int] = None,
|
|||
----------
|
||||
grid : damask.Grid
|
||||
Grid from which the material IDs are used as seeds.
|
||||
selection : iterable of integers, optional
|
||||
selection : sequence of int, optional
|
||||
Material IDs to consider.
|
||||
invert : boolean, false
|
||||
Consider all material IDs except those in selection. Defaults to False.
|
||||
|
@ -116,7 +119,7 @@ def from_grid(grid, selection: Sequence[int] = None,
|
|||
|
||||
Returns
|
||||
-------
|
||||
coords, materials : numpy.ndarray of shape (:,3), numpy.ndarray of shape (:)
|
||||
coords, materials : numpy.ndarray, shape (:,3); numpy.ndarray, shape (:)
|
||||
Seed coordinates in 3D space, material IDs.
|
||||
|
||||
"""
|
||||
|
|
|
@ -79,3 +79,23 @@ class TestCrystal:
|
|||
a=a,b=b,c=c,
|
||||
alpha=alpha,beta=beta,gamma=gamma)
|
||||
assert np.allclose(points,c.lattice_points)
|
||||
|
||||
@pytest.mark.parametrize('crystal,length',
|
||||
[(Crystal(lattice='cF'),[12,6]),
|
||||
(Crystal(lattice='cI'),[12,12,24]),
|
||||
(Crystal(lattice='hP'),[3,3,6,12,6]),
|
||||
(Crystal(lattice='tI',c=1.2),[2,2,2,4,2,4,2,2,4,8,4,8,8])
|
||||
])
|
||||
def test_N_slip(self,crystal,length):
|
||||
assert [len(s) for s in crystal.kinematics('slip')['direction']] == length
|
||||
assert [len(s) for s in crystal.kinematics('slip')['plane']] == length
|
||||
|
||||
@pytest.mark.parametrize('crystal,length',
|
||||
[(Crystal(lattice='cF'),[12]),
|
||||
(Crystal(lattice='cI'),[12]),
|
||||
(Crystal(lattice='hP'),[6,6,6,6]),
|
||||
])
|
||||
def test_N_twin(self,crystal,length):
|
||||
assert [len(s) for s in crystal.kinematics('twin')['direction']] == length
|
||||
assert [len(s) for s in crystal.kinematics('twin')['plane']] == length
|
||||
|
||||
|
|
|
@ -2,6 +2,8 @@ import pytest
|
|||
import numpy as np
|
||||
|
||||
from damask import grid_filters
|
||||
from damask import Grid
|
||||
from damask import seeds
|
||||
|
||||
class TestGridFilters:
|
||||
|
||||
|
@ -139,12 +141,19 @@ class TestGridFilters:
|
|||
else:
|
||||
function(unordered,mode)
|
||||
|
||||
def test_regrid(self):
|
||||
def test_regrid_identity(self):
|
||||
size = np.random.random(3)
|
||||
cells = np.random.randint(8,32,(3))
|
||||
F = np.broadcast_to(np.eye(3), tuple(cells)+(3,3))
|
||||
F = np.broadcast_to(np.eye(3), tuple(cells)+(3,3))
|
||||
assert all(grid_filters.regrid(size,F,cells) == np.arange(cells.prod()))
|
||||
|
||||
def test_regrid_double_cells(self):
|
||||
size = np.random.random(3)
|
||||
cells = np.random.randint(8,32,(3))
|
||||
g = Grid.from_Voronoi_tessellation(cells,size,seeds.from_random(size,10))
|
||||
F = np.broadcast_to(np.eye(3), tuple(cells)+(3,3))
|
||||
assert all(g.scale(cells*2).material.flatten() ==
|
||||
g.material.flatten()[grid_filters.regrid(size,F,cells*2)])
|
||||
|
||||
@pytest.mark.parametrize('differential_operator',[grid_filters.curl,
|
||||
grid_filters.divergence,
|
||||
|
|
|
@ -11,6 +11,6 @@ module constants
|
|||
real(pReal), parameter :: &
|
||||
T_ROOM = 300.0_pReal, & !< Room temperature in K. ToDo: IUPAC: 298.15
|
||||
K_B = 1.38e-23_pReal, & !< Boltzmann constant in J/Kelvin
|
||||
N_A = 6.02214076e-23_pReal !< Avogadro constant in 1/mol
|
||||
N_A = 6.02214076e23_pReal !< Avogadro constant in 1/mol
|
||||
|
||||
end module constants
|
||||
|
|
|
@ -30,7 +30,7 @@ module subroutine elastic_init(phases)
|
|||
phase, &
|
||||
mech, &
|
||||
elastic
|
||||
logical :: thermal_active
|
||||
|
||||
|
||||
print'(/,1x,a)', '<<<+- phase:mechanical:elastic init -+>>>'
|
||||
print'(/,1x,a)', '<<<+- phase:mechanical:elastic:Hooke init -+>>>'
|
||||
|
|
|
@ -372,7 +372,7 @@ end function rotTensor4
|
|||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!> @brief Rotate a rank-4 tensor in Voigt 6x6 notation passively (default) or actively.
|
||||
!> @brief Rotate a rank-4 stiffness tensor in Voigt 6x6 notation passively (default) or actively.
|
||||
!> @details: https://scicomp.stackexchange.com/questions/35600
|
||||
!! ToDo: Need to check active/passive !!!
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
|
@ -393,11 +393,11 @@ pure function rotStiffness(self,C,active) result(cRot)
|
|||
R = self%asMatrix()
|
||||
endif
|
||||
|
||||
M = reshape([R(1,1)**2.0_pReal, R(2,1)**2.0_pReal, R(3,1)**2.0_pReal, &
|
||||
M = reshape([R(1,1)**2, R(2,1)**2, R(3,1)**2, &
|
||||
R(2,1)*R(3,1), R(1,1)*R(3,1), R(1,1)*R(2,1), &
|
||||
R(1,2)**2.0_pReal, R(2,2)**2.0_pReal, R(3,2)**2.0_pReal, &
|
||||
R(1,2)**2, R(2,2)**2, R(3,2)**2, &
|
||||
R(2,2)*R(3,2), R(1,2)*R(3,2), R(1,2)*R(2,2), &
|
||||
R(1,3)**2.0_pReal, R(2,3)**2.0_pReal, R(3,3)**2.0_pReal, &
|
||||
R(1,3)**2, R(2,3)**2, R(3,3)**2, &
|
||||
R(2,3)*R(3,3), R(1,3)*R(3,3), R(1,3)*R(2,3), &
|
||||
2.0_pReal*R(1,2)*R(1,3), 2.0_pReal*R(2,2)*R(2,3), 2.0_pReal*R(3,2)*R(3,3), &
|
||||
R(2,2)*R(3,3)+R(2,3)*R(3,2), R(1,2)*R(3,3)+R(1,3)*R(3,2), R(1,2)*R(2,3)+R(1,3)*R(2,2), &
|
||||
|
|
Loading…
Reference in New Issue