new script for reconstruction of elements from F/IP(spectral_buildElements.py), corrected spectral_randomSeeding.py, made post/postResults.py aware of additional header/footer for file positions larger than 2**31-1

This commit is contained in:
Martin Diehl 2012-04-24 15:09:20 +00:00
parent f74b16051b
commit 99f2b8603a
4 changed files with 192 additions and 9 deletions

View File

@ -231,11 +231,29 @@ class MPIEspectral_result: # mimic py_post result object
return self.N_element_scalars
def element_scalar(self,e,idx):
self.file.seek(self.dataOffset+(self.position*(4+self.N_elements*self.N_element_scalars*8+4) + 4+(e*self.N_element_scalars + idx)*8))
fourByteLimit = 2**31 -1 -8
incStart = self.dataOffset\
+ self.position*(( 1\
+ self.N_elements*self.N_element_scalars\
+(self.N_elements*self.N_element_scalars*8)//fourByteLimit\
)*8)
# header and footer
# values
# extra header and footer for 4 byte int range (Fortran)
where = (e*self.N_element_scalars + idx)*8
try:
value = struct.unpack('d',self.file.read(8))[0]
if where%fourByteLimit + 8 >= fourByteLimit: # danger of reading into fortran record footer at 4 byte limit
data=''
for i in xrange(8):
where+= 1
self.file.seek(incStart+where+(where//fourByteLimit)*8+4)
data+=self.file.read(1)
value = struct.unpack('d',data)[0]
else:
self.file.seek(incStart+where+(where//fourByteLimit)*8+4)
value = struct.unpack('d',self.file.read(8))[0]
except:
print 'seeking',self.dataOffset+(self.position*(4+self.N_elements*self.N_element_scalars*8+4) + 4+(e*self.N_element_scalars + idx)*8)
print 'seeking',incStart+where+(where//fourByteLimit)*8+4
print 'e',e,'idx',idx
sys.exit(1)
return [elemental_scalar(node,value) for node in self.element(e).items]

View File

@ -0,0 +1,167 @@
#!/usr/bin/env python
import os,re,sys,math,string,numpy,damask
from optparse import OptionParser, Option
# -----------------------------
class extendableOption(Option):
# -----------------------------
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
# taken from online tutorial http://docs.python.org/library/optparse.html
ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(self, action, dest, opt, value, values, parser)
def location(idx,res):
return ( idx % res[0], \
( idx // res[0]) % res[1], \
( idx // res[0] // res[1]) % res[2] )
def index(location,res):
return ( location[0] % res[0] + \
( location[1] % res[1]) * res[0] + \
( location[2] % res[2]) * res[1] * res[0] )
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
Calculates current coordinates and nodal displacement from IP/FP based deformation gradient.
""" + string.replace('$Id$','\n','\\n')
)
parser.add_option('-c','--coordinates', dest='coords', type='string',\
help='column heading for coordinates [%default]')
parser.add_option('-d','--defgrad', dest='defgrad', type='string', \
help='heading of columns containing tensor field values')
parser.set_defaults(coords = 'ip')
parser.set_defaults(defgrad = 'f' )
(options,filenames) = parser.parse_args()
# ------------------------------------------ setup file handles ---------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name, 'input':open(name), \
'output':open(os.path.splitext(name)[0]+'_nodal'+os.path.splitext(name)[1],'w')})
# ------------------------------------------ loop over input files ---------------------------------------
for file in files:
if file['name'] != 'STDIN': print file['name'],
table = damask.ASCIItable(file['input']) # make unbuffered ASCII_table
table.head_read() # read ASCII header info
table.info_append(string.replace('$Id$','\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
# --------------- figure out dimension and resolution
try:
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
except ValueError:
print 'no coordinate data found...'
continue
grid = [{},{},{}]
while table.data_read(): # read next data line of ASCII table
if str(table.data[locationCol+1]) in grid[1] and len(grid[1])>1: # geomdim[1] and res[1] already figured out, skip layers
table.data_skipLines(len(grid[1])*len(grid[0])-1)
else:
if str(table.data[locationCol]) in grid[0]: # geomdim[0] and res[0] already figured out, skip lines
table.data_skipLines(len(grid[0])-1)
for j in xrange(3):
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
res = numpy.array([len(grid[0]),\
len(grid[1]),\
len(grid[2]),],'i') # resolution is number of distinct coordinates found
geomdim = res/numpy.maximum(numpy.ones(3,'d'),res-1.0)* \
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
],'d') # dimension from bounding box, corrected for cell-centeredness
if res[2] == 1:
geomdim[2] = min(geomdim[:2]/res[:2])
N = res.prod()
print '\t%s @ %s'%(geomdim,res)
# --------------- figure out columns to process
key = '1_%s' %options.defgrad
if key not in table.labels:
sys.stderr.write('column %s not found...\n'%key)
else:
column = table.labels.index(key)
# ------------------------------------------ read value field ---------------------------------------
defgrad = numpy.array([0.0 for i in xrange(N*9)]).reshape(list(res)+[3,3])
table.data_rewind()
table.data_read()
inc = table.data[table.labels.index('inc')]
table.data_rewind()
idx = 0
while table.data_read(): # read next data line of ASCII table
(x,y,z) = location(idx,res) # figure out (x,y,z) position from line count
idx += 1
defgrad[x,y,z] = numpy.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
file['input'].close() # close input ASCII table
# ------------------------------------------ process value field ----------------------------
defgrad_av = damask.core.math.tensor_avg(res,defgrad)
centroids = damask.core.math.deformed_fft(res,geomdim,defgrad_av,1.0,defgrad)
nodes = damask.core.math.mesh_regular_grid(res,geomdim,defgrad_av,centroids)
# ------------------------------------------ process data ---------------------------------------
table = damask.ASCIItable(fileOut=file['output'],buffered= False) # make unbuffered ASCII_table
table.info_append(string.replace('$Id$','\n','\\n') + \
'\t' + ' '.join(sys.argv[1:]))
table.labels_append('inc elem node ip grain ') # extend ASCII header with new labels
table.labels_append(['node.%s'%(coord) for coord in 'x','y','z']) # extend ASCII header with new labels
table.labels_append(['Displacement %s'%(coord) for coord in 'X','Y','Z']) # extend ASCII header with new labels
table.head_write()
ielem = 0
for z in xrange(res[2]+1):
for y in xrange(res[1]+1):
for x in xrange(res[0]+1):
ielem +=1
entry = [inc,0,ielem,0,0,'\t'.join([str(a) for a in(nodes[x][y][z])]),'\t'.join([str(a) for a in (nodes[x][y][z] - (x,y,z)*(geomdim/res))])]
table.data_append(entry)
table.data_write() # output processed line
table.data_clear()
# ------------------------------------------ assemble header ---------------------------------------
table.output_flush() # just in case of buffered ASCII table
if file['name'] != 'STDIN': file['output'].close # close output ASCII table

View File

@ -71,12 +71,9 @@ grainEuler[1,:] = numpy.arccos(2*grainEuler[1,:]-1)*180/math.pi
grainEuler[2,:] = 360*grainEuler[2,:]
seedpoint = numpy.random.permutation(options.res[0]*options.res[1]*options.res[2])[:options.N_Seeds]
seeds[0,:]=numpy.mod(seedpoint,options.res[0])/options.res[0]+1
seeds[1,:]=numpy.mod((seedpoint-seeds[0,:])/options.res[0],options.res[1])+1
seeds[2,:]=(seedpoint-seeds[0,:]-options.res[1]*seeds[1,:])/(options.res[0]*options.res[1])+1
seeds[0,:]=(seeds[0,:]+numpy.random.rand(1,options.N_Seeds)-0.5)/options.res[0]
seeds[1,:]=(seeds[1,:]+numpy.random.rand(1,options.N_Seeds)-0.5)/options.res[1]
seeds[2,:]=(seeds[2,:]+numpy.random.rand(1,options.N_Seeds)-0.5)/options.res[2]
seeds[0,:]=(numpy.mod(seedpoint ,options.res[0])+numpy.random.random())/options.res[0]
seeds[1,:]=(numpy.mod(seedpoint// options.res[0] ,options.res[1])+numpy.random.random())/options.res[1]
seeds[2,:]=(numpy.mod(seedpoint//(options.res[1]*options.res[0]),options.res[2])+numpy.random.random())/options.res[2]
f = open(options.filename+'.seeds', 'w')

View File

@ -112,6 +112,7 @@ bin_link = { \
'postResults.py',
'spectral_iterationCount.py',
'spectral_parseLog.py',
'spectral_buildElements.py',
'tagLabel.py',
],
}