new script for reconstruction of elements from F/IP(spectral_buildElements.py), corrected spectral_randomSeeding.py, made post/postResults.py aware of additional header/footer for file positions larger than 2**31-1
This commit is contained in:
parent
f74b16051b
commit
99f2b8603a
|
@ -231,11 +231,29 @@ class MPIEspectral_result: # mimic py_post result object
|
||||||
return self.N_element_scalars
|
return self.N_element_scalars
|
||||||
|
|
||||||
def element_scalar(self,e,idx):
|
def element_scalar(self,e,idx):
|
||||||
self.file.seek(self.dataOffset+(self.position*(4+self.N_elements*self.N_element_scalars*8+4) + 4+(e*self.N_element_scalars + idx)*8))
|
fourByteLimit = 2**31 -1 -8
|
||||||
|
incStart = self.dataOffset\
|
||||||
|
+ self.position*(( 1\
|
||||||
|
+ self.N_elements*self.N_element_scalars\
|
||||||
|
+(self.N_elements*self.N_element_scalars*8)//fourByteLimit\
|
||||||
|
)*8)
|
||||||
|
# header and footer
|
||||||
|
# values
|
||||||
|
# extra header and footer for 4 byte int range (Fortran)
|
||||||
|
where = (e*self.N_element_scalars + idx)*8
|
||||||
try:
|
try:
|
||||||
value = struct.unpack('d',self.file.read(8))[0]
|
if where%fourByteLimit + 8 >= fourByteLimit: # danger of reading into fortran record footer at 4 byte limit
|
||||||
|
data=''
|
||||||
|
for i in xrange(8):
|
||||||
|
where+= 1
|
||||||
|
self.file.seek(incStart+where+(where//fourByteLimit)*8+4)
|
||||||
|
data+=self.file.read(1)
|
||||||
|
value = struct.unpack('d',data)[0]
|
||||||
|
else:
|
||||||
|
self.file.seek(incStart+where+(where//fourByteLimit)*8+4)
|
||||||
|
value = struct.unpack('d',self.file.read(8))[0]
|
||||||
except:
|
except:
|
||||||
print 'seeking',self.dataOffset+(self.position*(4+self.N_elements*self.N_element_scalars*8+4) + 4+(e*self.N_element_scalars + idx)*8)
|
print 'seeking',incStart+where+(where//fourByteLimit)*8+4
|
||||||
print 'e',e,'idx',idx
|
print 'e',e,'idx',idx
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
return [elemental_scalar(node,value) for node in self.element(e).items]
|
return [elemental_scalar(node,value) for node in self.element(e).items]
|
||||||
|
|
|
@ -0,0 +1,167 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import os,re,sys,math,string,numpy,damask
|
||||||
|
from optparse import OptionParser, Option
|
||||||
|
|
||||||
|
# -----------------------------
|
||||||
|
class extendableOption(Option):
|
||||||
|
# -----------------------------
|
||||||
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||||||
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
||||||
|
|
||||||
|
ACTIONS = Option.ACTIONS + ("extend",)
|
||||||
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
||||||
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
||||||
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
||||||
|
|
||||||
|
def take_action(self, action, dest, opt, value, values, parser):
|
||||||
|
if action == "extend":
|
||||||
|
lvalue = value.split(",")
|
||||||
|
values.ensure_value(dest, []).extend(lvalue)
|
||||||
|
else:
|
||||||
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
||||||
|
|
||||||
|
def location(idx,res):
|
||||||
|
return ( idx % res[0], \
|
||||||
|
( idx // res[0]) % res[1], \
|
||||||
|
( idx // res[0] // res[1]) % res[2] )
|
||||||
|
|
||||||
|
def index(location,res):
|
||||||
|
return ( location[0] % res[0] + \
|
||||||
|
( location[1] % res[1]) * res[0] + \
|
||||||
|
( location[2] % res[2]) * res[1] * res[0] )
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------------------------------
|
||||||
|
# MAIN
|
||||||
|
# --------------------------------------------------------------------
|
||||||
|
|
||||||
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
||||||
|
Calculates current coordinates and nodal displacement from IP/FP based deformation gradient.
|
||||||
|
|
||||||
|
""" + string.replace('$Id$','\n','\\n')
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_option('-c','--coordinates', dest='coords', type='string',\
|
||||||
|
help='column heading for coordinates [%default]')
|
||||||
|
parser.add_option('-d','--defgrad', dest='defgrad', type='string', \
|
||||||
|
help='heading of columns containing tensor field values')
|
||||||
|
|
||||||
|
parser.set_defaults(coords = 'ip')
|
||||||
|
parser.set_defaults(defgrad = 'f' )
|
||||||
|
|
||||||
|
(options,filenames) = parser.parse_args()
|
||||||
|
|
||||||
|
# ------------------------------------------ setup file handles ---------------------------------------
|
||||||
|
|
||||||
|
files = []
|
||||||
|
if filenames == []:
|
||||||
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
|
||||||
|
else:
|
||||||
|
for name in filenames:
|
||||||
|
if os.path.exists(name):
|
||||||
|
files.append({'name':name, 'input':open(name), \
|
||||||
|
'output':open(os.path.splitext(name)[0]+'_nodal'+os.path.splitext(name)[1],'w')})
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------ loop over input files ---------------------------------------
|
||||||
|
for file in files:
|
||||||
|
if file['name'] != 'STDIN': print file['name'],
|
||||||
|
table = damask.ASCIItable(file['input']) # make unbuffered ASCII_table
|
||||||
|
table.head_read() # read ASCII header info
|
||||||
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||||
|
'\t' + ' '.join(sys.argv[1:]))
|
||||||
|
|
||||||
|
# --------------- figure out dimension and resolution
|
||||||
|
try:
|
||||||
|
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data
|
||||||
|
except ValueError:
|
||||||
|
print 'no coordinate data found...'
|
||||||
|
continue
|
||||||
|
|
||||||
|
grid = [{},{},{}]
|
||||||
|
|
||||||
|
while table.data_read(): # read next data line of ASCII table
|
||||||
|
if str(table.data[locationCol+1]) in grid[1] and len(grid[1])>1: # geomdim[1] and res[1] already figured out, skip layers
|
||||||
|
table.data_skipLines(len(grid[1])*len(grid[0])-1)
|
||||||
|
else:
|
||||||
|
if str(table.data[locationCol]) in grid[0]: # geomdim[0] and res[0] already figured out, skip lines
|
||||||
|
table.data_skipLines(len(grid[0])-1)
|
||||||
|
for j in xrange(3):
|
||||||
|
grid[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
||||||
|
|
||||||
|
res = numpy.array([len(grid[0]),\
|
||||||
|
len(grid[1]),\
|
||||||
|
len(grid[2]),],'i') # resolution is number of distinct coordinates found
|
||||||
|
geomdim = res/numpy.maximum(numpy.ones(3,'d'),res-1.0)* \
|
||||||
|
numpy.array([max(map(float,grid[0].keys()))-min(map(float,grid[0].keys())),\
|
||||||
|
max(map(float,grid[1].keys()))-min(map(float,grid[1].keys())),\
|
||||||
|
max(map(float,grid[2].keys()))-min(map(float,grid[2].keys())),\
|
||||||
|
],'d') # dimension from bounding box, corrected for cell-centeredness
|
||||||
|
if res[2] == 1:
|
||||||
|
geomdim[2] = min(geomdim[:2]/res[:2])
|
||||||
|
|
||||||
|
N = res.prod()
|
||||||
|
print '\t%s @ %s'%(geomdim,res)
|
||||||
|
|
||||||
|
|
||||||
|
# --------------- figure out columns to process
|
||||||
|
|
||||||
|
key = '1_%s' %options.defgrad
|
||||||
|
if key not in table.labels:
|
||||||
|
sys.stderr.write('column %s not found...\n'%key)
|
||||||
|
else:
|
||||||
|
column = table.labels.index(key)
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------ read value field ---------------------------------------
|
||||||
|
|
||||||
|
defgrad = numpy.array([0.0 for i in xrange(N*9)]).reshape(list(res)+[3,3])
|
||||||
|
|
||||||
|
table.data_rewind()
|
||||||
|
table.data_read()
|
||||||
|
inc = table.data[table.labels.index('inc')]
|
||||||
|
|
||||||
|
table.data_rewind()
|
||||||
|
idx = 0
|
||||||
|
while table.data_read(): # read next data line of ASCII table
|
||||||
|
(x,y,z) = location(idx,res) # figure out (x,y,z) position from line count
|
||||||
|
idx += 1
|
||||||
|
defgrad[x,y,z] = numpy.array(map(float,table.data[column:column+9]),'d').reshape(3,3)
|
||||||
|
|
||||||
|
|
||||||
|
file['input'].close() # close input ASCII table
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------ process value field ----------------------------
|
||||||
|
|
||||||
|
defgrad_av = damask.core.math.tensor_avg(res,defgrad)
|
||||||
|
centroids = damask.core.math.deformed_fft(res,geomdim,defgrad_av,1.0,defgrad)
|
||||||
|
nodes = damask.core.math.mesh_regular_grid(res,geomdim,defgrad_av,centroids)
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------------------------------ process data ---------------------------------------
|
||||||
|
table = damask.ASCIItable(fileOut=file['output'],buffered= False) # make unbuffered ASCII_table
|
||||||
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
||||||
|
'\t' + ' '.join(sys.argv[1:]))
|
||||||
|
|
||||||
|
table.labels_append('inc elem node ip grain ') # extend ASCII header with new labels
|
||||||
|
table.labels_append(['node.%s'%(coord) for coord in 'x','y','z']) # extend ASCII header with new labels
|
||||||
|
table.labels_append(['Displacement %s'%(coord) for coord in 'X','Y','Z']) # extend ASCII header with new labels
|
||||||
|
table.head_write()
|
||||||
|
|
||||||
|
ielem = 0
|
||||||
|
for z in xrange(res[2]+1):
|
||||||
|
for y in xrange(res[1]+1):
|
||||||
|
for x in xrange(res[0]+1):
|
||||||
|
ielem +=1
|
||||||
|
entry = [inc,0,ielem,0,0,'\t'.join([str(a) for a in(nodes[x][y][z])]),'\t'.join([str(a) for a in (nodes[x][y][z] - (x,y,z)*(geomdim/res))])]
|
||||||
|
table.data_append(entry)
|
||||||
|
table.data_write() # output processed line
|
||||||
|
table.data_clear()
|
||||||
|
# ------------------------------------------ assemble header ---------------------------------------
|
||||||
|
|
||||||
|
table.output_flush() # just in case of buffered ASCII table
|
||||||
|
|
||||||
|
if file['name'] != 'STDIN': file['output'].close # close output ASCII table
|
|
@ -71,12 +71,9 @@ grainEuler[1,:] = numpy.arccos(2*grainEuler[1,:]-1)*180/math.pi
|
||||||
grainEuler[2,:] = 360*grainEuler[2,:]
|
grainEuler[2,:] = 360*grainEuler[2,:]
|
||||||
|
|
||||||
seedpoint = numpy.random.permutation(options.res[0]*options.res[1]*options.res[2])[:options.N_Seeds]
|
seedpoint = numpy.random.permutation(options.res[0]*options.res[1]*options.res[2])[:options.N_Seeds]
|
||||||
seeds[0,:]=numpy.mod(seedpoint,options.res[0])/options.res[0]+1
|
seeds[0,:]=(numpy.mod(seedpoint ,options.res[0])+numpy.random.random())/options.res[0]
|
||||||
seeds[1,:]=numpy.mod((seedpoint-seeds[0,:])/options.res[0],options.res[1])+1
|
seeds[1,:]=(numpy.mod(seedpoint// options.res[0] ,options.res[1])+numpy.random.random())/options.res[1]
|
||||||
seeds[2,:]=(seedpoint-seeds[0,:]-options.res[1]*seeds[1,:])/(options.res[0]*options.res[1])+1
|
seeds[2,:]=(numpy.mod(seedpoint//(options.res[1]*options.res[0]),options.res[2])+numpy.random.random())/options.res[2]
|
||||||
seeds[0,:]=(seeds[0,:]+numpy.random.rand(1,options.N_Seeds)-0.5)/options.res[0]
|
|
||||||
seeds[1,:]=(seeds[1,:]+numpy.random.rand(1,options.N_Seeds)-0.5)/options.res[1]
|
|
||||||
seeds[2,:]=(seeds[2,:]+numpy.random.rand(1,options.N_Seeds)-0.5)/options.res[2]
|
|
||||||
|
|
||||||
f = open(options.filename+'.seeds', 'w')
|
f = open(options.filename+'.seeds', 'w')
|
||||||
|
|
||||||
|
|
|
@ -112,6 +112,7 @@ bin_link = { \
|
||||||
'postResults.py',
|
'postResults.py',
|
||||||
'spectral_iterationCount.py',
|
'spectral_iterationCount.py',
|
||||||
'spectral_parseLog.py',
|
'spectral_parseLog.py',
|
||||||
|
'spectral_buildElements.py',
|
||||||
'tagLabel.py',
|
'tagLabel.py',
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue