diff --git a/processing/post/rotateData.py b/processing/post/rotateData.py index d53ae1cc9..3fa36a843 100755 --- a/processing/post/rotateData.py +++ b/processing/post/rotateData.py @@ -19,11 +19,11 @@ Uniformly scale values of scalar, vector, or tensor columns by given factor. """, version = scriptID) -parser.add_option('-v','--vector', dest = 'vector', action = 'extend', metavar='string', +parser.add_option('-v','--vector', dest = 'vector', action = 'extend', metavar = 'string', help = 'column heading of vector to scale') -parser.add_option('-t','--tensor', dest = 'tensor', action = 'extend', metavar='string', +parser.add_option('-t','--tensor', dest = 'tensor', action = 'extend', metavar = 'string', help = 'column heading of tensor to scale') -parser.add_option('-r', '--rotation',dest = 'rotation', type = 'float', nargs = 4, metavar='int int int int', +parser.add_option('-r', '--rotation',dest = 'rotation', type = 'float', nargs = 4, metavar = ' '.join(['float']*4), help = 'angle and axis to rotate data %default') parser.add_option('-d', '--degrees', dest = 'degrees', action = 'store_true', help = 'angles are given in degrees [%default]') @@ -86,21 +86,25 @@ for file in files: # ------------------------------------------ process data ------------------------------------------ outputAlive = True while outputAlive and table.data_read(): # read next data line of ASCII table + datatype = 'vector' + for label in active[datatype] if datatype in active else []: # loop over all requested labels table.data[column[datatype][label]:column[datatype][label]+datainfo[datatype]['len']] = \ r * np.array(map(float, - table.data[column[datatype][label]:\ - column[datatype][label]+datainfo[datatype]['len']])) + table.data[column[datatype][label]:\ + column[datatype][label]+datainfo[datatype]['len']])) datatype = 'tensor' for label in active[datatype] if datatype in active else []: # loop over all requested labels - table.data[column[datatype][label]:column[datatype][label]+datainfo[datatype]['len']] = \ - (np.array(map(float,table.data[column[datatype][label]:\ - column[datatype][label]+datainfo[datatype]['len']])).\ - reshape(np.sqrt(datainfo[datatype]['len']),\ - np.sqrt(datainfo[datatype]['len'])) * R).reshape(datainfo[datatype]['len']) + A = np.array(map(float,table.data[column[datatype][label]:\ + column[datatype][label]+datainfo[datatype]['len']])).\ + reshape(np.sqrt(datainfo[datatype]['len']), + np.sqrt(datainfo[datatype]['len'])) + table.data[column[datatype][label]:\ + column[datatype][label]+datainfo[datatype]['len']] = \ + np.dot(R,np.dot(A,R.transpose())).reshape(datainfo[datatype]['len']) outputAlive = table.data_write() # output processed line # ------------------------------------------ output result -----------------------------------------