Merge branch 'HDF5-out-homog-2' into 'development'

Hdf5 out homog 2

See merge request damask/DAMASK!78
This commit is contained in:
Franz Roters 2019-05-13 17:34:59 +02:00
commit 998789528c
8 changed files with 110 additions and 331 deletions

View File

@ -506,7 +506,7 @@ Processing:
- rm abq_addUserOutput.py marc_addUserOutput.py - rm abq_addUserOutput.py marc_addUserOutput.py
- $DAMASKROOT/PRIVATE/documenting/scriptHelpToWiki.py --debug *.py - $DAMASKROOT/PRIVATE/documenting/scriptHelpToWiki.py --debug *.py
- cd $DAMASKROOT/processing/post - cd $DAMASKROOT/processing/post
- rm marc_to_vtk.py vtk2ang.py DAD*.py - rm vtk2ang.py DAD*.py
- $DAMASKROOT/PRIVATE/documenting/scriptHelpToWiki.py --debug *.py - $DAMASKROOT/PRIVATE/documenting/scriptHelpToWiki.py --debug *.py
except: except:
- master - master

View File

@ -1,199 +0,0 @@
#!/usr/bin/env python2.7
# -*- coding: UTF-8 no BOM -*-
import os,sys,re
import argparse
import damask
import vtk, numpy as np
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName, damask.version])
parser = argparse.ArgumentParser(description='Convert from Marc input file format (.dat) to VTK format (.vtu)', version = scriptID)
parser.add_argument('filename', type=str, help='file to convert')
parser.add_argument('-t', '--table', type=str, help='ASCIItable file containing nodal data to subdivide and interpolate')
args = parser.parse_args()
with open(args.filename, 'r') as marcfile:
marctext = marcfile.read();
# Load table (if any)
if args.table is not None:
try:
table = damask.ASCIItable(
name=args.table,
outname='subdivided_{}'.format(args.table),
buffered=True
)
table.head_read()
table.data_readArray()
# Python list is faster for appending
nodal_data = list(table.data)
except: args.table = None
# Extract connectivity chunk from file...
connectivity_text = re.findall(r'connectivity[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
connectivity_lines = re.split(r'[\n\r]+', connectivity_text, flags=(re.MULTILINE | re.DOTALL))
connectivity_header = connectivity_lines[0]
connectivity_lines = connectivity_lines[1:]
# Construct element map
elements = dict(map(lambda line:
(
int(line[0:10]), # index
{
'type': int(line[10:20]),
'verts': list(map(int, re.split(r' +', line[20:].strip())))
}
), connectivity_lines))
# Extract coordinate chunk from file
coordinates_text = re.findall(r'coordinates[\n\r]+(.*?)[\n\r]+[a-zA-Z]', marctext, flags=(re.MULTILINE | re.DOTALL))[0]
coordinates_lines = re.split(r'[\n\r]+', coordinates_text, flags=(re.MULTILINE | re.DOTALL))
coordinates_header = coordinates_lines[0]
coordinates_lines = coordinates_lines[1:]
# marc input file does not use "e" in scientific notation, this adds it and converts
fl_format = lambda string: float(re.sub(r'(\d)([\+\-])', r'\1e\2', string))
# Construct coordinate map
coordinates = dict(map(lambda line:
(
int(line[0:10]),
np.array([
fl_format(line[10:30]),
fl_format(line[30:50]),
fl_format(line[50:70])
])
), coordinates_lines))
# Subdivide volumes
grid = vtk.vtkUnstructuredGrid()
vertex_count = len(coordinates)
edge_to_vert = dict() # when edges are subdivided, a new vertex in the middle is produced and placed in here
ordered_pair = lambda a, b: (a, b) if a < b else (b, a) # edges are bidirectional
def subdivide_edge(vert1, vert2):
edge = ordered_pair(vert1, vert2)
if edge in edge_to_vert:
return edge_to_vert[edge]
# Vertex does not exist, create it
newvert = len(coordinates) + 1
coordinates[newvert] = 0.5 * (coordinates[vert1] + coordinates[vert2]) # Average
edge_to_vert[edge] = newvert;
# Interpolate nodal data
if args.table is not None:
nodal_data.append(0.5 * (nodal_data[vert1 - 1] + nodal_data[vert2 - 1]))
return newvert;
for el_id in range(1, len(elements) + 1): # Marc starts counting at 1
el = elements[el_id]
if el['type'] == 7:
# Hexahedron, subdivided
# There may be a better way to iterate over these, but this is consistent
# with the ordering scheme provided at https://damask.mpie.de/pub/Documentation/ElementType
subverts = np.zeros((3,3,3), dtype=int)
# Get corners
subverts[0, 0, 0] = el['verts'][0]
subverts[2, 0, 0] = el['verts'][1]
subverts[2, 2, 0] = el['verts'][2]
subverts[0, 2, 0] = el['verts'][3]
subverts[0, 0, 2] = el['verts'][4]
subverts[2, 0, 2] = el['verts'][5]
subverts[2, 2, 2] = el['verts'][6]
subverts[0, 2, 2] = el['verts'][7]
# lower edges
subverts[1, 0, 0] = subdivide_edge(subverts[0, 0, 0], subverts[2, 0, 0])
subverts[2, 1, 0] = subdivide_edge(subverts[2, 0, 0], subverts[2, 2, 0])
subverts[1, 2, 0] = subdivide_edge(subverts[2, 2, 0], subverts[0, 2, 0])
subverts[0, 1, 0] = subdivide_edge(subverts[0, 2, 0], subverts[0, 0, 0])
# middle edges
subverts[0, 0, 1] = subdivide_edge(subverts[0, 0, 0], subverts[0, 0, 2])
subverts[2, 0, 1] = subdivide_edge(subverts[2, 0, 0], subverts[2, 0, 2])
subverts[2, 2, 1] = subdivide_edge(subverts[2, 2, 0], subverts[2, 2, 2])
subverts[0, 2, 1] = subdivide_edge(subverts[0, 2, 0], subverts[0, 2, 2])
# top edges
subverts[1, 0, 2] = subdivide_edge(subverts[0, 0, 2], subverts[2, 0, 2])
subverts[2, 1, 2] = subdivide_edge(subverts[2, 0, 2], subverts[2, 2, 2])
subverts[1, 2, 2] = subdivide_edge(subverts[2, 2, 2], subverts[0, 2, 2])
subverts[0, 1, 2] = subdivide_edge(subverts[0, 2, 2], subverts[0, 0, 2])
# then faces... The edge_to_vert addition is due to there being two ways
# to calculate a face vertex, depending on which opposite vertices are used to subdivide.
# This way, we avoid creating duplicate vertices.
subverts[1, 1, 0] = subdivide_edge(subverts[1, 0, 0], subverts[1, 2, 0])
edge_to_vert[ordered_pair(subverts[0, 1, 0], subverts[2, 1, 0])] = subverts[1, 1, 0]
subverts[1, 0, 1] = subdivide_edge(subverts[1, 0, 0], subverts[1, 0, 2])
edge_to_vert[ordered_pair(subverts[0, 0, 1], subverts[2, 0, 1])] = subverts[1, 0, 1]
subverts[2, 1, 1] = subdivide_edge(subverts[2, 1, 0], subverts[2, 1, 2])
edge_to_vert[ordered_pair(subverts[2, 0, 1], subverts[2, 2, 1])] = subverts[2, 1, 1]
subverts[1, 2, 1] = subdivide_edge(subverts[1, 2, 0], subverts[1, 2, 2])
edge_to_vert[ordered_pair(subverts[0, 2, 1], subverts[2, 2, 1])] = subverts[1, 2, 1]
subverts[0, 1, 1] = subdivide_edge(subverts[0, 1, 0], subverts[0, 1, 2])
edge_to_vert[ordered_pair(subverts[0, 0, 1], subverts[0, 2, 1])] = subverts[0, 1, 1]
subverts[1, 1, 2] = subdivide_edge(subverts[1, 0, 2], subverts[1, 2, 2])
edge_to_vert[ordered_pair(subverts[0, 1, 2], subverts[2, 1, 2])] = subverts[1, 1, 2]
# and finally the center. There are three ways to calculate, but elements should
# not intersect, so the edge_to_vert part isn't needed here.
subverts[1, 1, 1] = subdivide_edge(subverts[1, 1, 0], subverts[1, 1, 2])
# Now make the hexahedron subelements
# order in which vtk expects vertices for a hexahedron
order = np.array([(0,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,1),(1,0,1),(1,1,1),(0,1,1)])
for z in range(2):
for y in range(2):
for x in range(2):
hex_ = vtk.vtkHexahedron()
for vert_id in range(8):
coord = order[vert_id] + (x, y, z)
# minus one, since vtk starts at zero but marc starts at one
hex_.GetPointIds().SetId(vert_id, subverts[coord[0], coord[1], coord[2]] - 1)
grid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds())
else:
damask.util.croak('Unsupported Marc element type: {} (skipping)'.format(el['type']))
# Load all points
points = vtk.vtkPoints()
for point in range(1, len(coordinates) + 1): # marc indices start at 1
points.InsertNextPoint(coordinates[point].tolist())
grid.SetPoints(points)
# grid now contains the elements from the given marc file
writer = vtk.vtkXMLUnstructuredGridWriter()
writer.SetFileName(re.sub(r'\..+', ".vtu", args.filename)) # *.vtk extension does not work in paraview
if vtk.VTK_MAJOR_VERSION <= 5: writer.SetInput(grid)
else: writer.SetInputData(grid)
writer.Write()
if args.table is not None:
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
])
table.head_write()
table.output_flush()
table.data = np.array(nodal_data)
table.data_writeArray()
table.close()

View File

@ -299,6 +299,8 @@ subroutine CPFEM_results(inc,time)
pInt pInt
use results use results
use HDF5_utilities use HDF5_utilities
use homogenization, only: &
homogenization_results
use constitutive, only: & use constitutive, only: &
constitutive_results constitutive_results
use crystallite, only: & use crystallite, only: &
@ -312,6 +314,7 @@ subroutine CPFEM_results(inc,time)
call results_addIncrement(inc,time) call results_addIncrement(inc,time)
call constitutive_results call constitutive_results
call crystallite_results call crystallite_results
call homogenization_results
call results_removeLink('current') ! ToDo: put this into closeJobFile call results_removeLink('current') ! ToDo: put this into closeJobFile
call results_closeJobFile call results_closeJobFile

View File

@ -7,6 +7,7 @@
module homogenization module homogenization
use prec, only: & use prec, only: &
pReal pReal
use material
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point ! General variables for the homogenization at a material point
@ -66,7 +67,8 @@ module homogenization
public :: & public :: &
homogenization_init, & homogenization_init, &
materialpoint_stressAndItsTangent, & materialpoint_stressAndItsTangent, &
materialpoint_postResults materialpoint_postResults, &
homogenization_results
private :: & private :: &
partitionDeformation, & partitionDeformation, &
updateState, & updateState, &
@ -100,7 +102,6 @@ subroutine homogenization_init
config_deallocate, & config_deallocate, &
config_homogenization, & config_homogenization, &
homogenization_name homogenization_name
use material
use homogenization_mech_RGC use homogenization_mech_RGC
use thermal_isothermal use thermal_isothermal
use thermal_adiabatic use thermal_adiabatic
@ -291,7 +292,6 @@ subroutine homogenization_init
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged)
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy) write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
endif endif
flush(6) flush(6)
@ -316,17 +316,6 @@ subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
terminallyIll terminallyIll
use mesh, only: & use mesh, only: &
mesh_element mesh_element
use material, only: &
plasticState, &
sourceState, &
homogState, &
thermalState, &
damageState, &
phase_Nsources, &
material_homogenizationAt, &
mappingHomogenization, &
phaseAt, phasememberAt, &
homogenization_Ngrains
use crystallite, only: & use crystallite, only: &
crystallite_F0, & crystallite_F0, &
crystallite_Fp0, & crystallite_Fp0, &
@ -658,16 +647,6 @@ subroutine materialpoint_postResults
FEsolving_execIP FEsolving_execIP
use mesh, only: & use mesh, only: &
mesh_element mesh_element
use material, only: &
material_homogenizationAt, &
homogState, &
thermalState, &
damageState, &
plasticState, &
sourceState, &
material_phase, &
homogenization_Ngrains, &
microstructure_crystallite
use crystallite, only: & use crystallite, only: &
crystallite_sizePostResults, & crystallite_sizePostResults, &
crystallite_postResults crystallite_postResults
@ -723,12 +702,6 @@ end subroutine materialpoint_postResults
subroutine partitionDeformation(ip,el) subroutine partitionDeformation(ip,el)
use mesh, only: & use mesh, only: &
mesh_element mesh_element
use material, only: &
homogenization_type, &
homogenization_Ngrains, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID
use crystallite, only: & use crystallite, only: &
crystallite_partionedF crystallite_partionedF
use homogenization_mech_RGC, only: & use homogenization_mech_RGC, only: &
@ -767,14 +740,6 @@ end subroutine partitionDeformation
function updateState(ip,el) function updateState(ip,el)
use mesh, only: & use mesh, only: &
mesh_element mesh_element
use material, only: &
homogenization_type, &
thermal_type, &
damage_type, &
homogenization_Ngrains, &
HOMOGENIZATION_RGC_ID, &
THERMAL_adiabatic_ID, &
DAMAGE_local_ID
use crystallite, only: & use crystallite, only: &
crystallite_P, & crystallite_P, &
crystallite_dPdF, & crystallite_dPdF, &
@ -835,13 +800,6 @@ end function updateState
subroutine averageStressAndItsTangent(ip,el) subroutine averageStressAndItsTangent(ip,el)
use mesh, only: & use mesh, only: &
mesh_element mesh_element
use material, only: &
homogenization_type, &
homogenization_typeInstance, &
homogenization_Ngrains, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID
use crystallite, only: & use crystallite, only: &
crystallite_P,crystallite_dPdF crystallite_P,crystallite_dPdF
use homogenization_mech_RGC, only: & use homogenization_mech_RGC, only: &
@ -884,27 +842,6 @@ end subroutine averageStressAndItsTangent
function postResults(ip,el) function postResults(ip,el)
use mesh, only: & use mesh, only: &
mesh_element mesh_element
use material, only: &
thermalMapping, &
thermal_typeInstance, &
material_homogenizationAt, &
homogenization_typeInstance,&
mappingHomogenization, &
homogState, &
thermalState, &
damageState, &
homogenization_type, &
thermal_type, &
damage_type, &
HOMOGENIZATION_NONE_ID, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_RGC_ID, &
THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, &
THERMAL_conduction_ID, &
DAMAGE_none_ID, &
DAMAGE_local_ID, &
DAMAGE_nonlocal_ID
use homogenization_mech_RGC, only: & use homogenization_mech_RGC, only: &
homogenization_RGC_postResults homogenization_RGC_postResults
use thermal_adiabatic, only: & use thermal_adiabatic, only: &
@ -969,4 +906,41 @@ function postResults(ip,el)
end function postResults end function postResults
!--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_results
#if defined(PETSc) || defined(DAMASK_HDF5)
use results
use homogenization_mech_RGC
use HDF5_utilities
use config, only: &
config_name_homogenization => homogenization_name ! anticipate logical name
use material, only: &
homogenization_typeInstance, &
material_homogenization_type => homogenization_type
integer :: p
character(len=256) :: group
do p=1,size(config_name_homogenization)
group = trim('current/materialpoint')//'/'//trim(config_name_homogenization(p))
call HDF5_closeGroup(results_addGroup(group))
group = trim(group)//'/mech'
call HDF5_closeGroup(results_addGroup(group))
select case(material_homogenization_type(p))
case(HOMOGENIZATION_rgc_ID)
call mech_RGC_results(homogenization_typeInstance(p),group)
end select
enddo
#endif
end subroutine homogenization_results
end module homogenization end module homogenization

View File

@ -9,6 +9,7 @@
module homogenization_mech_RGC module homogenization_mech_RGC
use prec, only: & use prec, only: &
pReal pReal
use material
implicit none implicit none
private private
@ -75,7 +76,8 @@ module homogenization_mech_RGC
homogenization_RGC_partitionDeformation, & homogenization_RGC_partitionDeformation, &
homogenization_RGC_averageStressAndItsTangent, & homogenization_RGC_averageStressAndItsTangent, &
homogenization_RGC_updateState, & homogenization_RGC_updateState, &
homogenization_RGC_postResults homogenization_RGC_postResults, &
mech_RGC_results ! name suited for planned submodule situation
private :: & private :: &
relaxationVector, & relaxationVector, &
interfaceNormal, & interfaceNormal, &
@ -104,18 +106,6 @@ subroutine homogenization_RGC_init()
INRAD INRAD
use IO, only: & use IO, only: &
IO_error IO_error
use material, only: &
#ifdef DEBUG
mappingHomogenization, &
#endif
homogenization_type, &
material_homogenizationAt, &
homogState, &
HOMOGENIZATION_RGC_ID, &
HOMOGENIZATION_RGC_LABEL, &
homogenization_typeInstance, &
homogenization_Noutput, &
homogenization_Ngrains
use config, only: & use config, only: &
config_homogenization config_homogenization
@ -322,10 +312,6 @@ function homogenization_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el)
#endif #endif
use math, only: & use math, only: &
math_invert2 math_invert2
use material, only: &
material_homogenizationAt, &
homogenization_typeInstance, &
mappingHomogenization
use numerics, only: & use numerics, only: &
absTol_RGC, & absTol_RGC, &
relTol_RGC, & relTol_RGC, &
@ -1109,6 +1095,54 @@ pure function homogenization_RGC_postResults(instance,of) result(postResults)
end function homogenization_RGC_postResults end function homogenization_RGC_postResults
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
! ToDo: check wheter units are correct
!--------------------------------------------------------------------------------------------------
subroutine mech_RGC_results(instance,group)
#if defined(PETSc) || defined(DAMASK_HDF5)
use results, only: &
results_writeDataset
integer, intent(in) :: instance
character(len=*) :: group
integer :: o
associate(stt => state(instance), dst => dependentState(instance), prm => param(instance))
outputsLoop: do o = 1,size(prm%outputID)
select case(prm%outputID(o))
case (constitutivework_ID)
call results_writeDataset(group,stt%work,'W',&
'work density','J/m³')
case (magnitudemismatch_ID)
call results_writeDataset(group,dst%mismatch,'N',&
'average mismatch tensor','1')
case (penaltyenergy_ID)
call results_writeDataset(group,stt%penaltyEnergy,'R',&
'mismatch penalty density','J/m³')
case (volumediscrepancy_ID)
call results_writeDataset(group,dst%volumeDiscrepancy,'Delta_V',&
'volume discrepancy','m³')
case (maximumrelaxrate_ID)
call results_writeDataset(group,dst%relaxationrate_max,'max_alpha_dot',&
'maximum relaxation rate','m/s')
case (averagerelaxrate_ID)
call results_writeDataset(group,dst%relaxationrate_avg,'avg_alpha_dot',&
'average relaxation rate','m/s')
end select
enddo outputsLoop
end associate
#else
integer, intent(in) :: instance
character(len=*) :: group
#endif
end subroutine mech_RGC_results
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief collect relaxation vectors of an interface !> @brief collect relaxation vectors of an interface
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------

View File

@ -36,13 +36,6 @@ module subroutine mech_isostrain_init
debug_levelBasic debug_levelBasic
use IO, only: & use IO, only: &
IO_error IO_error
use material, only: &
homogenization_type, &
material_homogenizationAt, &
homogState, &
HOMOGENIZATION_ISOSTRAIN_ID, &
HOMOGENIZATION_ISOSTRAIN_LABEL, &
homogenization_typeInstance
use config, only: & use config, only: &
config_homogenization config_homogenization

View File

@ -20,12 +20,6 @@ module subroutine mech_none_init
debug_levelBasic debug_levelBasic
use config, only: & use config, only: &
config_homogenization config_homogenization
use material, only: &
homogenization_type, &
material_homogenizationAt, &
homogState, &
HOMOGENIZATION_NONE_LABEL, &
HOMOGENIZATION_NONE_ID
implicit none implicit none
integer :: & integer :: &

View File

@ -53,55 +53,35 @@ module material
enum, bind(c) enum, bind(c)
enumerator :: ELASTICITY_undefined_ID, & enumerator :: ELASTICITY_undefined_ID, &
ELASTICITY_hooke_ID ELASTICITY_hooke_ID, &
end enum PLASTICITY_undefined_ID, &
enum, bind(c)
enumerator :: PLASTICITY_undefined_ID, &
PLASTICITY_none_ID, & PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, & PLASTICITY_isotropic_ID, &
PLASTICITY_phenopowerlaw_ID, & PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_kinehardening_ID, & PLASTICITY_kinehardening_ID, &
PLASTICITY_dislotwin_ID, & PLASTICITY_dislotwin_ID, &
PLASTICITY_disloucla_ID, & PLASTICITY_disloucla_ID, &
PLASTICITY_nonlocal_ID PLASTICITY_nonlocal_ID, &
end enum SOURCE_undefined_ID, &
enum, bind(c)
enumerator :: SOURCE_undefined_ID, &
SOURCE_thermal_dissipation_ID, & SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID, & SOURCE_thermal_externalheat_ID, &
SOURCE_damage_isoBrittle_ID, & SOURCE_damage_isoBrittle_ID, &
SOURCE_damage_isoDuctile_ID, & SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, & SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID SOURCE_damage_anisoDuctile_ID, &
end enum KINEMATICS_undefined_ID, &
enum, bind(c)
enumerator :: KINEMATICS_undefined_ID, &
KINEMATICS_cleavage_opening_ID, & KINEMATICS_cleavage_opening_ID, &
KINEMATICS_slipplane_opening_ID, & KINEMATICS_slipplane_opening_ID, &
KINEMATICS_thermal_expansion_ID KINEMATICS_thermal_expansion_ID, &
end enum STIFFNESS_DEGRADATION_undefined_ID, &
STIFFNESS_DEGRADATION_damage_ID, &
enum, bind(c) THERMAL_isothermal_ID, &
enumerator :: STIFFNESS_DEGRADATION_undefined_ID, &
STIFFNESS_DEGRADATION_damage_ID
end enum
enum, bind(c)
enumerator :: THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, & THERMAL_adiabatic_ID, &
THERMAL_conduction_ID THERMAL_conduction_ID, &
end enum DAMAGE_none_ID, &
enum, bind(c)
enumerator :: DAMAGE_none_ID, &
DAMAGE_local_ID, & DAMAGE_local_ID, &
DAMAGE_nonlocal_ID DAMAGE_nonlocal_ID, &
end enum HOMOGENIZATION_undefined_ID, &
enum, bind(c)
enumerator :: HOMOGENIZATION_undefined_ID, &
HOMOGENIZATION_none_ID, & HOMOGENIZATION_none_ID, &
HOMOGENIZATION_isostrain_ID, & HOMOGENIZATION_isostrain_ID, &
HOMOGENIZATION_rgc_ID HOMOGENIZATION_rgc_ID