precision is ok, but numpy.sum takes sum over all dimensions per default
This commit is contained in:
parent
9a5eb45212
commit
9972a22043
|
@ -1567,7 +1567,7 @@ class Rotation:
|
|||
+0.000059719705868660826, -0.00001980756723965647,
|
||||
+0.000003953714684212874, -0.00000036555001439719544])
|
||||
hmag_squared = np.sum(ho**2.,axis=-1,keepdims=True)
|
||||
s = sum([t*hmag_squared**i for i,t in enumerate(tfit)]) # np.sum fails due to higher precision
|
||||
s = np.sum(np.array([t*hmag_squared**i for i,t in enumerate(tfit)]),0)
|
||||
with np.errstate(invalid='ignore'):
|
||||
ax = np.where(np.broadcast_to(np.abs(hmag_squared)<1.e-8,ho.shape[:-1]+(4,)),
|
||||
[ 0.0, 0.0, 1.0, 0.0 ],
|
||||
|
|
Loading…
Reference in New Issue