more vectorized functions

This commit is contained in:
Martin Diehl 2020-04-11 13:57:05 +02:00
parent 4e759d6c98
commit 99655c9f61
2 changed files with 54 additions and 23 deletions

View File

@ -767,8 +767,8 @@ class Rotation:
def eu2ro(eu): def eu2ro(eu):
"""Bunge-Euler angles to Rodrigues-Frank vector.""" """Bunge-Euler angles to Rodrigues-Frank vector."""
if len(eu.shape) == 1: if len(eu.shape) == 1:
ro = Rotation.eu2ax(eu) # convert to axis angle pair representation ro = Rotation.eu2ax(eu) # convert to axis angle pair representation
if ro[3] >= np.pi: # Differs from original implementation. check convention 5 if ro[3] >= np.pi: # Differs from original implementation. check convention 5
ro[3] = np.inf ro[3] = np.inf
elif iszero(ro[3]): elif iszero(ro[3]):
ro = np.array([ 0.0, 0.0, P, 0.0 ]) ro = np.array([ 0.0, 0.0, P, 0.0 ])
@ -902,27 +902,38 @@ class Rotation:
@staticmethod @staticmethod
def ro2ax(ro): def ro2ax(ro):
"""Rodrigues-Frank vector to axis angle pair.""" """Rodrigues-Frank vector to axis angle pair."""
ta = ro[3] if len(ro.shape) == 1:
if np.abs(ro[3]) < 1.e-6:
if iszero(ta): ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
ax = [ 0.0, 0.0, 1.0, 0.0 ] elif not np.isfinite(ro[3]):
elif not np.isfinite(ta): ax = np.array([ ro[0], ro[1], ro[2], np.pi ])
ax = [ ro[0], ro[1], ro[2], np.pi ] else:
angle = 2.0*np.arctan(ro[3])
ta = np.linalg.norm(ro[0:3])
ax = np.array([ ro[0]*ta, ro[1]*ta, ro[2]*ta, angle ])
else: else:
angle = 2.0*np.arctan(ta) with np.errstate(invalid='ignore',divide='ignore'):
ta = 1.0/np.linalg.norm(ro[0:3]) ax = np.where(np.isfinite(ro[...,3:4]),
ax = [ ro[0]/ta, ro[1]/ta, ro[2]/ta, angle ] np.block([ro[...,0:3]*np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True),2.*np.arctan(ro[...,3:4])]),
return np.array(ax) np.block([ro[...,0:3],np.broadcast_to(np.pi,ro[...,3:4].shape)]))
ax[np.abs(ro[...,3]) < 1.e-6] = np.array([ 0.0, 0.0, 1.0, 0.0 ])
return ax
@staticmethod @staticmethod
def ro2ho(ro): def ro2ho(ro):
"""Rodrigues-Frank vector to homochoric vector.""" """Rodrigues-Frank vector to homochoric vector."""
if iszero(np.sum(ro[0:3]**2.0)): if len(ro.shape) == 1:
ho = [ 0.0, 0.0, 0.0 ] if np.sum(ro[0:3]**2.0) < 1.e-6:
ho = np.zeros(3)
else:
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
else: else:
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi f = np.where(np.isfinite(ro[...,3:4]),2.0*np.arctan(ro[...,3:4]) -np.sin(2.0*np.arctan(ro[...,3:4])),np.pi)
ho = ro[0:3] * (0.75*f)**(1.0/3.0) ho = np.where(np.broadcast_to(np.sum(ro[...,0:3]**2.0,axis=-1,keepdims=True) < 1.e-6,ro[...,0:3].shape),
return np.array(ho) np.zeros(3), ro[...,0:3]* (0.75*f)**(1.0/3.0))
return ho
@staticmethod @staticmethod
def ro2cu(ro): def ro2cu(ro):

View File

@ -123,7 +123,7 @@ class TestRotation:
print(m,o,rot.asQuaternion()) print(m,o,rot.asQuaternion())
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi++1.e-9 assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi++1.e-9
def test_Rodriques(self,default): def test_Rodrigues(self,default):
for rot in default: for rot in default:
m = rot.asMatrix() m = rot.asMatrix()
o = Rotation.fromRodrigues(rot.asRodrigues()).asMatrix() o = Rotation.fromRodrigues(rot.asRodrigues()).asMatrix()
@ -164,18 +164,21 @@ class TestRotation:
Rotation.qu2ho]) Rotation.qu2ho])
def test_quaternion_vectorization(self,default,conversion): def test_quaternion_vectorization(self,default,conversion):
qu = np.array([rot.asQuaternion() for rot in default]) qu = np.array([rot.asQuaternion() for rot in default])
dev_null = conversion(qu.reshape(qu.shape[0]//2,-1,4)) conversion(qu.reshape(qu.shape[0]//2,-1,4))
co = conversion(qu) co = conversion(qu)
for q,c in zip(qu,co): for q,c in zip(qu,co):
print(q,c) print(q,c)
assert np.allclose(conversion(q),c) assert np.allclose(conversion(q),c)
@pytest.mark.parametrize('conversion',[Rotation.om2eu, @pytest.mark.parametrize('conversion',[Rotation.om2qu,
Rotation.om2eu,
Rotation.om2ax, Rotation.om2ax,
Rotation.om2ro,
Rotation.om2ho,
]) ])
def test_matrix_vectorization(self,default,conversion): def test_matrix_vectorization(self,default,conversion):
om = np.array([rot.asMatrix() for rot in default]) om = np.array([rot.asMatrix() for rot in default])
dev_null = conversion(om.reshape(om.shape[0]//2,-1,3,3)) conversion(om.reshape(om.shape[0]//2,-1,3,3))
co = conversion(om) co = conversion(om)
for o,c in zip(om,co): for o,c in zip(om,co):
print(o,c) print(o,c)
@ -185,10 +188,11 @@ class TestRotation:
Rotation.eu2om, Rotation.eu2om,
Rotation.eu2ax, Rotation.eu2ax,
Rotation.eu2ro, Rotation.eu2ro,
Rotation.eu2ho,
]) ])
def test_Euler_vectorization(self,default,conversion): def test_Euler_vectorization(self,default,conversion):
eu = np.array([rot.asEulers() for rot in default]) eu = np.array([rot.asEulers() for rot in default])
dev_null = conversion(eu.reshape(eu.shape[0]//2,-1,3)) conversion(eu.reshape(eu.shape[0]//2,-1,3))
co = conversion(eu) co = conversion(eu)
for e,c in zip(eu,co): for e,c in zip(eu,co):
print(e,c) print(e,c)
@ -196,13 +200,29 @@ class TestRotation:
@pytest.mark.parametrize('conversion',[Rotation.ax2qu, @pytest.mark.parametrize('conversion',[Rotation.ax2qu,
Rotation.ax2om, Rotation.ax2om,
Rotation.ax2eu,
Rotation.ax2ro, Rotation.ax2ro,
Rotation.ax2ho, Rotation.ax2ho,
]) ])
def test_axisAngle_vectorization(self,default,conversion): def test_axisAngle_vectorization(self,default,conversion):
ax = np.array([rot.asAxisAngle() for rot in default]) ax = np.array([rot.asAxisAngle() for rot in default])
dev_null = conversion(ax.reshape(ax.shape[0]//2,-1,4)) conversion(ax.reshape(ax.shape[0]//2,-1,4))
co = conversion(ax) co = conversion(ax)
for a,c in zip(ax,co): for a,c in zip(ax,co):
print(a,c) print(a,c)
assert np.allclose(conversion(a),c) assert np.allclose(conversion(a),c)
@pytest.mark.parametrize('conversion',[Rotation.ro2qu,
Rotation.ro2om,
Rotation.ro2eu,
Rotation.ro2ax,
Rotation.ro2ho,
])
def test_Rodrigues_vectorization(self,default,conversion):
ro = np.array([rot.asRodrigues() for rot in default])
conversion(ro.reshape(ro.shape[0]//2,-1,4))
co = conversion(ro)
for r,c in zip(ro,co):
print(r,c)
assert np.allclose(conversion(r),c)