more renames

This commit is contained in:
Martin Diehl 2019-03-20 21:51:52 +01:00
parent facef25f8e
commit 9936b382fd
1 changed files with 125 additions and 130 deletions

View File

@ -45,11 +45,11 @@ module plastic_dislotwin
nu, & nu, &
D0, & !< prefactor for self-diffusion coefficient D0, & !< prefactor for self-diffusion coefficient
Qsd, & !< activation energy for dislocation climb Qsd, & !< activation energy for dislocation climb
GrainSize, & !<grain size D, & !<grain size
pShearBand, & !< p-exponent in shear band velocity pShearBand, & !< p-exponent in shear band velocity
qShearBand, & !< q-exponent in shear band velocity qShearBand, & !< q-exponent in shear band velocity
CEdgeDipMinDistance, & !< CEdgeDipMinDistance, & !<
Cmfptwin, & !< i_tw, & !<
SolidSolutionStrength, & !<strength due to elements in solid solution SolidSolutionStrength, & !<strength due to elements in solid solution
L0_twin, & !< Length of twin nuclei in Burgers vectors L0_twin, & !< Length of twin nuclei in Burgers vectors
L0_trans, & !< Length of trans nuclei in Burgers vectors L0_trans, & !< Length of trans nuclei in Burgers vectors
@ -58,14 +58,14 @@ module plastic_dislotwin
VcrossSlip, & !< cross slip volume VcrossSlip, & !< cross slip volume
sbResistance, & !< value for shearband resistance (might become an internal state variable at some point) sbResistance, & !< value for shearband resistance (might become an internal state variable at some point)
sbVelocity, & !< value for shearband velocity_0 sbVelocity, & !< value for shearband velocity_0
sbQedge, & !< value for shearband systems Qedge sbQedge, & !< activation energy for shear bands
SFE_0K, & !< stacking fault energy at zero K SFE_0K, & !< stacking fault energy at zero K
dSFE_dT, & !< temperature dependance of stacking fault energy dSFE_dT, & !< temperature dependance of stacking fault energy
aTol_rho, & !< absolute tolerance for integration of dislocation density aTol_rho, & !< absolute tolerance for integration of dislocation density
aTol_f_tw, & !< absolute tolerance for integration of twin volume fraction aTol_f_tw, & !< absolute tolerance for integration of twin volume fraction
aTol_f_tr, & !< absolute tolerance for integration of trans volume fraction aTol_f_tr, & !< absolute tolerance for integration of trans volume fraction
deltaG, & !< Free energy difference between austensite and martensite deltaG, & !< Free energy difference between austensite and martensite
Cmfptrans, & !< i_tr, & !<
transStackHeight !< Stack height of hex nucleus transStackHeight !< Stack height of hex nucleus
real(pReal), dimension(:), allocatable :: & real(pReal), dimension(:), allocatable :: &
rho_mob_0, & !< initial unipolar dislocation density per slip system rho_mob_0, & !< initial unipolar dislocation density per slip system
@ -73,9 +73,8 @@ module plastic_dislotwin
b_sl, & !< absolute length of burgers vector [m] for each slip system b_sl, & !< absolute length of burgers vector [m] for each slip system
b_tw, & !< absolute length of burgers vector [m] for each twin system b_tw, & !< absolute length of burgers vector [m] for each twin system
b_tr, & !< absolute length of burgers vector [m] for each transformation system b_tr, & !< absolute length of burgers vector [m] for each transformation system
Qedge,& !< activation energy for glide [J] for each slip system Delta_F,& !< activation energy for glide [J] for each slip system
v0, & !< dislocation velocity prefactor [m/s] for each slip system v0, & !< dislocation velocity prefactor [m/s] for each slip system
tau_peierls,& !< Peierls stress [Pa] for each slip system
Ndot0_twin, & !< twin nucleation rate [1/m³s] for each twin system Ndot0_twin, & !< twin nucleation rate [1/m³s] for each twin system
Ndot0_trans, & !< trans nucleation rate [1/m³s] for each trans system Ndot0_trans, & !< trans nucleation rate [1/m³s] for each trans system
twinsize, & !< twin thickness [m] for each twin system twinsize, & !< twin thickness [m] for each twin system
@ -122,10 +121,10 @@ module plastic_dislotwin
type, private :: tDislotwinState type, private :: tDislotwinState
real(pReal), dimension(:,:), pointer :: & real(pReal), dimension(:,:), pointer :: &
rhoEdge, & rho_mob, &
rhoEdgeDip, & rho_dip, &
accshear_slip, & accshear_slip, &
twinFraction, & f_tw, &
strainTransFraction strainTransFraction
end type tDislotwinState end type tDislotwinState
@ -137,10 +136,10 @@ module plastic_dislotwin
tau_pass, & tau_pass, &
threshold_stress_twin, & threshold_stress_twin, &
threshold_stress_trans, & threshold_stress_trans, &
twinVolume, & f_tw, &
martensiteVolume, & f_tr, &
tau_r_twin, & !< stress to bring partials close together (twin) tau_r_tw, & !< stress to bring partials close together (twin)
tau_r_trans !< stress to bring partials close together (trans) tau_r_tr !< stress to bring partials close together (trans)
end type tDislotwinMicrostructure end type tDislotwinMicrostructure
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -284,14 +283,12 @@ subroutine plastic_dislotwin_init
prm%rho_dip_0 = config%getFloats('rhoedgedip0',requiredSize=size(prm%N_sl)) prm%rho_dip_0 = config%getFloats('rhoedgedip0',requiredSize=size(prm%N_sl))
prm%v0 = config%getFloats('v0', requiredSize=size(prm%N_sl)) prm%v0 = config%getFloats('v0', requiredSize=size(prm%N_sl))
prm%b_sl = config%getFloats('slipburgers',requiredSize=size(prm%N_sl)) prm%b_sl = config%getFloats('slipburgers',requiredSize=size(prm%N_sl))
prm%Qedge = config%getFloats('qedge', requiredSize=size(prm%N_sl)) !ToDo: rename (ask Karo) prm%Delta_F = config%getFloats('qedge', requiredSize=size(prm%N_sl))
prm%CLambdaSlip = config%getFloats('clambdaslip',requiredSize=size(prm%N_sl)) prm%CLambdaSlip = config%getFloats('clambdaslip',requiredSize=size(prm%N_sl))
prm%p = config%getFloats('p_slip', requiredSize=size(prm%N_sl)) prm%p = config%getFloats('p_slip', requiredSize=size(prm%N_sl))
prm%q = config%getFloats('q_slip', requiredSize=size(prm%N_sl)) prm%q = config%getFloats('q_slip', requiredSize=size(prm%N_sl))
prm%B = config%getFloats('b', requiredSize=size(prm%N_sl), & prm%B = config%getFloats('b', requiredSize=size(prm%N_sl), &
defaultVal=[(0.0_pReal, i=1,size(prm%N_sl))]) defaultVal=[(0.0_pReal, i=1,size(prm%N_sl))])
prm%tau_peierls = config%getFloats('tau_peierls',requiredSize=size(prm%N_sl), &
defaultVal=[(0.0_pReal, i=1,size(prm%N_sl))]) ! Deprecated
prm%CEdgeDipMinDistance = config%getFloat('cedgedipmindistance') prm%CEdgeDipMinDistance = config%getFloat('cedgedipmindistance')
prm%D0 = config%getFloat('d0') prm%D0 = config%getFloat('d0')
@ -303,12 +300,11 @@ subroutine plastic_dislotwin_init
prm%rho_dip_0 = math_expand(prm%rho_dip_0, prm%N_sl) prm%rho_dip_0 = math_expand(prm%rho_dip_0, prm%N_sl)
prm%v0 = math_expand(prm%v0, prm%N_sl) prm%v0 = math_expand(prm%v0, prm%N_sl)
prm%b_sl = math_expand(prm%b_sl,prm%N_sl) prm%b_sl = math_expand(prm%b_sl,prm%N_sl)
prm%Qedge = math_expand(prm%Qedge, prm%N_sl) prm%Delta_F = math_expand(prm%Delta_F, prm%N_sl)
prm%CLambdaSlip = math_expand(prm%CLambdaSlip, prm%N_sl) prm%CLambdaSlip = math_expand(prm%CLambdaSlip, prm%N_sl)
prm%p = math_expand(prm%p, prm%N_sl) prm%p = math_expand(prm%p, prm%N_sl)
prm%q = math_expand(prm%q, prm%N_sl) prm%q = math_expand(prm%q, prm%N_sl)
prm%B = math_expand(prm%B, prm%N_sl) prm%B = math_expand(prm%B, prm%N_sl)
prm%tau_peierls = math_expand(prm%tau_peierls, prm%N_sl)
prm%atomicVolume = math_expand(prm%atomicVolume,prm%N_sl) prm%atomicVolume = math_expand(prm%atomicVolume,prm%N_sl)
! sanity checks ! sanity checks
@ -318,10 +314,9 @@ subroutine plastic_dislotwin_init
if (any(prm%rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0' if (any(prm%rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0'
if (any(prm%v0 < 0.0_pReal)) extmsg = trim(extmsg)//' v0' if (any(prm%v0 < 0.0_pReal)) extmsg = trim(extmsg)//' v0'
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl' if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
if (any(prm%Qedge <= 0.0_pReal)) extmsg = trim(extmsg)//' Qedge' if (any(prm%Delta_F <= 0.0_pReal)) extmsg = trim(extmsg)//' Delta_F'
if (any(prm%CLambdaSlip <= 0.0_pReal)) extmsg = trim(extmsg)//' CLambdaSlip' if (any(prm%CLambdaSlip <= 0.0_pReal)) extmsg = trim(extmsg)//' CLambdaSlip'
if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B' if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B'
if (any(prm%tau_peierls < 0.0_pReal)) extmsg = trim(extmsg)//' tau_peierls'
if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p' if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p'
if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q' if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q'
@ -346,7 +341,7 @@ subroutine plastic_dislotwin_init
prm%xc_twin = config%getFloat('xc_twin') prm%xc_twin = config%getFloat('xc_twin')
prm%L0_twin = config%getFloat('l0_twin') prm%L0_twin = config%getFloat('l0_twin')
prm%Cmfptwin = config%getFloat('cmfptwin', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%i_tw = config%getFloat('cmfptwin')
prm%shear_twin = lattice_characteristicShear_Twin(prm%N_tw,config%getString('lattice_structure'),& prm%shear_twin = lattice_characteristicShear_Twin(prm%N_tw,config%getString('lattice_structure'),&
config%getFloat('c/a',defaultVal=0.0_pReal)) config%getFloat('c/a',defaultVal=0.0_pReal))
@ -379,7 +374,7 @@ subroutine plastic_dislotwin_init
prm%b_tr = math_expand(prm%b_tr,prm%N_tr) prm%b_tr = math_expand(prm%b_tr,prm%N_tr)
prm%transStackHeight = config%getFloat('transstackheight', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%transStackHeight = config%getFloat('transstackheight', defaultVal=0.0_pReal) ! ToDo: How to handle that???
prm%Cmfptrans = config%getFloat('cmfptrans', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%i_tr = config%getFloat('cmfptrans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
prm%deltaG = config%getFloat('deltag') prm%deltaG = config%getFloat('deltag')
prm%xc_trans = config%getFloat('xc_trans', defaultVal=0.0_pReal) ! ToDo: How to handle that??? prm%xc_trans = config%getFloat('xc_trans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
prm%L0_trans = config%getFloat('l0_trans') prm%L0_trans = config%getFloat('l0_trans')
@ -451,7 +446,7 @@ subroutine plastic_dislotwin_init
prm%GrainSize = config%getFloat('grainsize') prm%D = config%getFloat('grainsize')
prm%SolidSolutionStrength = config%getFloat('solidsolutionstrength') ! Deprecated prm%SolidSolutionStrength = config%getFloat('solidsolutionstrength') ! Deprecated
if (config%keyExists('dipoleformationfactor')) call IO_error(1,ext_msg='use /nodipoleformation/') if (config%keyExists('dipoleformationfactor')) call IO_error(1,ext_msg='use /nodipoleformation/')
@ -531,9 +526,9 @@ subroutine plastic_dislotwin_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! allocate state arrays ! allocate state arrays
NipcMyPhase = count(material_phase == p) NipcMyPhase = count(material_phase == p)
sizeDotState = size(['rho ','rhoDip ','accshearslip']) * prm%sum_N_sl & sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl &
+ size(['twinFraction']) * prm%sum_N_tw & + size(['f_tw']) * prm%sum_N_tw &
+ size(['strainTransFraction']) * prm%sum_N_tr + size(['f_tr']) * prm%sum_N_tr
sizeState = sizeDotState sizeState = sizeDotState
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0, & call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0, &
@ -545,16 +540,16 @@ subroutine plastic_dislotwin_init
! locally defined state aliases and initialization of state0 and aTolState ! locally defined state aliases and initialization of state0 and aTolState
startIndex = 1 startIndex = 1
endIndex = prm%sum_N_sl endIndex = prm%sum_N_sl
stt%rhoEdge=>plasticState(p)%state(startIndex:endIndex,:) stt%rho_mob=>plasticState(p)%state(startIndex:endIndex,:)
stt%rhoEdge= spread(prm%rho_mob_0,2,NipcMyPhase) stt%rho_mob= spread(prm%rho_mob_0,2,NipcMyPhase)
dot%rhoEdge=>plasticState(p)%dotState(startIndex:endIndex,:) dot%rho_mob=>plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_rho plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_rho
startIndex = endIndex + 1 startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_sl endIndex = endIndex + prm%sum_N_sl
stt%rhoEdgeDip=>plasticState(p)%state(startIndex:endIndex,:) stt%rho_dip=>plasticState(p)%state(startIndex:endIndex,:)
stt%rhoEdgeDip= spread(prm%rho_dip_0,2,NipcMyPhase) stt%rho_dip= spread(prm%rho_dip_0,2,NipcMyPhase)
dot%rhoEdgeDip=>plasticState(p)%dotState(startIndex:endIndex,:) dot%rho_dip=>plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_rho plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_rho
startIndex = endIndex + 1 startIndex = endIndex + 1
@ -568,8 +563,8 @@ subroutine plastic_dislotwin_init
startIndex = endIndex + 1 startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_tw endIndex = endIndex + prm%sum_N_tw
stt%twinFraction=>plasticState(p)%state(startIndex:endIndex,:) stt%f_tw=>plasticState(p)%state(startIndex:endIndex,:)
dot%twinFraction=>plasticState(p)%dotState(startIndex:endIndex,:) dot%f_tw=>plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_f_tw plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_f_tw
startIndex = endIndex + 1 startIndex = endIndex + 1
@ -583,13 +578,13 @@ subroutine plastic_dislotwin_init
allocate(dst%Lambda_tw (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal) allocate(dst%Lambda_tw (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
allocate(dst%threshold_stress_twin (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal) allocate(dst%threshold_stress_twin (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
allocate(dst%tau_r_twin (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal) allocate(dst%tau_r_tw (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
allocate(dst%twinVolume (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal) allocate(dst%f_tw (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
allocate(dst%Lambda_tr (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal) allocate(dst%Lambda_tr (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
allocate(dst%threshold_stress_trans(prm%sum_N_tr,NipcMyPhase),source=0.0_pReal) allocate(dst%threshold_stress_trans(prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
allocate(dst%tau_r_trans (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal) allocate(dst%tau_r_tr (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
allocate(dst%martensiteVolume (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal) allocate(dst%f_tr (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally
@ -627,13 +622,13 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el) result(homogenizedC)
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el)))) stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
f_unrotated = 1.0_pReal & f_unrotated = 1.0_pReal &
- sum(stt%twinFraction(1:prm%sum_N_tw,of)) & - sum(stt%f_tw(1:prm%sum_N_tw,of)) &
- sum(stt%strainTransFraction(1:prm%sum_N_tr,of)) - sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
homogenizedC = f_unrotated * prm%C66 homogenizedC = f_unrotated * prm%C66
do i=1,prm%sum_N_tw do i=1,prm%sum_N_tw
homogenizedC = homogenizedC & homogenizedC = homogenizedC &
+ stt%twinFraction(i,of)*prm%C66_twin(1:6,1:6,i) + stt%f_tw(i,of)*prm%C66_twin(1:6,1:6,i)
enddo enddo
do i=1,prm%sum_N_tr do i=1,prm%sum_N_tr
homogenizedC = homogenizedC & homogenizedC = homogenizedC &
@ -648,7 +643,7 @@ end function plastic_dislotwin_homogenizedC
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent !> @brief calculates plastic velocity gradient and its tangent
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,of) subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,instance,of)
use prec, only: & use prec, only: &
tol_math_check, & tol_math_check, &
dNeq0 dNeq0
@ -664,7 +659,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
real(pReal), dimension(3,3,3,3), intent(out) :: dLp_dMp real(pReal), dimension(3,3,3,3), intent(out) :: dLp_dMp
real(pReal), dimension(3,3), intent(in) :: Mp real(pReal), dimension(3,3), intent(in) :: Mp
integer, intent(in) :: instance,of integer, intent(in) :: instance,of
real(pReal), intent(in) :: Temperature real(pReal), intent(in) :: T
integer :: i,k,l,m,n integer :: i,k,l,m,n
real(pReal) :: f_unrotated,StressRatio_p,& real(pReal) :: f_unrotated,StressRatio_p,&
@ -676,7 +671,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
real(pReal), dimension(param(instance)%sum_N_tw) :: & real(pReal), dimension(param(instance)%sum_N_tw) :: &
dot_gamma_twin,dgamma_dtau_twin dot_gamma_twin,dgamma_dtau_twin
real(pReal), dimension(param(instance)%sum_N_tr) :: & real(pReal), dimension(param(instance)%sum_N_tr) :: &
dot_gamma_trans,dgamma_dtau_trans dot_gamma_tr,dgamma_dtau_trans
real(pReal):: dot_gamma_sb real(pReal):: dot_gamma_sb
real(pReal), dimension(3,3) :: eigVectors, Schmid_shearBand real(pReal), dimension(3,3) :: eigVectors, Schmid_shearBand
real(pReal), dimension(3) :: eigValues real(pReal), dimension(3) :: eigValues
@ -704,13 +699,13 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
associate(prm => param(instance), stt => state(instance)) associate(prm => param(instance), stt => state(instance))
f_unrotated = 1.0_pReal & f_unrotated = 1.0_pReal &
- sum(stt%twinFraction(1:prm%sum_N_tw,of)) & - sum(stt%f_tw(1:prm%sum_N_tw,of)) &
- sum(stt%strainTransFraction(1:prm%sum_N_tr,of)) - sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
Lp = 0.0_pReal Lp = 0.0_pReal
dLp_dMp = 0.0_pReal dLp_dMp = 0.0_pReal
call kinetics_slip(Mp,temperature,instance,of,dot_gamma_sl,dgamma_dtau_slip) call kinetics_slip(Mp,T,instance,of,dot_gamma_sl,dgamma_dtau_slip)
slipContribution: do i = 1, prm%sum_N_sl slipContribution: do i = 1, prm%sum_N_sl
Lp = Lp + dot_gamma_sl(i)*prm%Schmid_slip(1:3,1:3,i) Lp = Lp + dot_gamma_sl(i)*prm%Schmid_slip(1:3,1:3,i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) & forall (k=1:3,l=1:3,m=1:3,n=1:3) &
@ -724,7 +719,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
shearBandingContribution: if(dNeq0(prm%sbVelocity)) then shearBandingContribution: if(dNeq0(prm%sbVelocity)) then
BoltzmannRatio = prm%sbQedge/(kB*Temperature) BoltzmannRatio = prm%sbQedge/(kB*T)
call math_eigenValuesVectorsSym(Mp,eigValues,eigVectors,error) call math_eigenValuesVectorsSym(Mp,eigValues,eigVectors,error)
do i = 1,6 do i = 1,6
@ -748,7 +743,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
endif shearBandingContribution endif shearBandingContribution
call kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_twin,dgamma_dtau_twin) call kinetics_twin(Mp,T,dot_gamma_sl,instance,of,dot_gamma_twin,dgamma_dtau_twin)
twinContibution: do i = 1, prm%sum_N_tw twinContibution: do i = 1, prm%sum_N_tw
Lp = Lp + dot_gamma_twin(i)*prm%Schmid_twin(1:3,1:3,i) * f_unrotated Lp = Lp + dot_gamma_twin(i)*prm%Schmid_twin(1:3,1:3,i) * f_unrotated
forall (k=1:3,l=1:3,m=1:3,n=1:3) & forall (k=1:3,l=1:3,m=1:3,n=1:3) &
@ -756,9 +751,9 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
+ dgamma_dtau_twin(i)* prm%Schmid_twin(k,l,i)*prm%Schmid_twin(m,n,i) * f_unrotated + dgamma_dtau_twin(i)* prm%Schmid_twin(k,l,i)*prm%Schmid_twin(m,n,i) * f_unrotated
enddo twinContibution enddo twinContibution
call kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_trans,dgamma_dtau_trans) call kinetics_twin(Mp,T,dot_gamma_sl,instance,of,dot_gamma_tr,dgamma_dtau_trans)
transContibution: do i = 1, prm%sum_N_tr transContibution: do i = 1, prm%sum_N_tr
Lp = Lp + dot_gamma_trans(i)*prm%Schmid_trans(1:3,1:3,i) * f_unrotated Lp = Lp + dot_gamma_tr(i)*prm%Schmid_trans(1:3,1:3,i) * f_unrotated
forall (k=1:3,l=1:3,m=1:3,n=1:3) & forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) & dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
+ dgamma_dtau_trans(i)* prm%Schmid_trans(k,l,i)*prm%Schmid_trans(m,n,i) * f_unrotated + dgamma_dtau_trans(i)* prm%Schmid_trans(k,l,i)*prm%Schmid_trans(m,n,i) * f_unrotated
@ -773,7 +768,7 @@ end subroutine plastic_dislotwin_LpAndItsTangent
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure !> @brief calculates the rate of change of microstructure
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of) subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
use prec, only: & use prec, only: &
tol_math_check, & tol_math_check, &
dEq0 dEq0
@ -788,7 +783,7 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
real(pReal), dimension(3,3), intent(in):: & real(pReal), dimension(3,3), intent(in):: &
Mp !< Mandel stress Mp !< Mandel stress
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
temperature !< temperature at integration point T !< temperature at integration point
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of of
@ -796,8 +791,8 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
integer :: i integer :: i
real(pReal) :: f_unrotated,& real(pReal) :: f_unrotated,&
VacancyDiffusion,& VacancyDiffusion,&
EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, & EdgeDipDistance, ClimbVelocity,Dotrho_dipClimb,Dotrho_dipAnnihilation, &
DotRhoDipFormation,DotRhoEdgeEdgeAnnihilation, & Dotrho_DipFormation,Dotrho_mobEdgeAnnihilation, &
tau tau
real(pReal), dimension(param(instance)%sum_N_sl) :: & real(pReal), dimension(param(instance)%sum_N_sl) :: &
EdgeDipMinDistance, & EdgeDipMinDistance, &
@ -806,17 +801,17 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
real(pReal), dimension(param(instance)%sum_N_tw) :: & real(pReal), dimension(param(instance)%sum_N_tw) :: &
dot_gamma_twin dot_gamma_twin
real(pReal), dimension(param(instance)%sum_N_tr) :: & real(pReal), dimension(param(instance)%sum_N_tr) :: &
dot_gamma_trans dot_gamma_tr
associate(prm => param(instance), stt => state(instance), & associate(prm => param(instance), stt => state(instance), &
dot => dotstate(instance), dst => microstructure(instance)) dot => dotstate(instance), dst => microstructure(instance))
f_unrotated = 1.0_pReal & f_unrotated = 1.0_pReal &
- sum(stt%twinFraction(1:prm%sum_N_tw,of)) & - sum(stt%f_tw(1:prm%sum_N_tw,of)) &
- sum(stt%strainTransFraction(1:prm%sum_N_tr,of)) - sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature)) VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*T))
call kinetics_slip(Mp,temperature,instance,of,dot_gamma_sl) call kinetics_slip(Mp,T,instance,of,dot_gamma_sl)
dot%accshear_slip(:,of) = abs(dot_gamma_sl) dot%accshear_slip(:,of) = abs(dot_gamma_sl)
DotRhoMultiplication = abs(dot_gamma_sl)/(prm%b_sl*dst%Lambda_sl(:,of)) DotRhoMultiplication = abs(dot_gamma_sl)/(prm%b_sl*dst%Lambda_sl(:,of))
@ -826,46 +821,46 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
tau = math_mul33xx33(Mp,prm%Schmid_slip(1:3,1:3,i)) tau = math_mul33xx33(Mp,prm%Schmid_slip(1:3,1:3,i))
significantSlipStress: if (dEq0(tau)) then significantSlipStress: if (dEq0(tau)) then
DotRhoDipFormation = 0.0_pReal Dotrho_DipFormation = 0.0_pReal
DotRhoEdgeDipClimb = 0.0_pReal Dotrho_dipClimb = 0.0_pReal
else significantSlipStress else significantSlipStress
EdgeDipDistance = 3.0_pReal*prm%mu*prm%b_sl(i)/(16.0_pReal*PI*abs(tau)) EdgeDipDistance = 3.0_pReal*prm%mu*prm%b_sl(i)/(16.0_pReal*PI*abs(tau))
EdgeDipDistance = math_clip(EdgeDipDistance, right = dst%Lambda_sl(i,of)) EdgeDipDistance = math_clip(EdgeDipDistance, right = dst%Lambda_sl(i,of))
EdgeDipDistance = math_clip(EdgeDipDistance, left = EdgeDipMinDistance(i)) EdgeDipDistance = math_clip(EdgeDipDistance, left = EdgeDipMinDistance(i))
if (prm%dipoleFormation) then if (prm%dipoleFormation) then
DotRhoDipFormation = 2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance(i))/prm%b_sl(i) & Dotrho_DipFormation = 2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance(i))/prm%b_sl(i) &
* stt%rhoEdge(i,of)*abs(dot_gamma_sl(i)) * stt%rho_mob(i,of)*abs(dot_gamma_sl(i))
else else
DotRhoDipFormation = 0.0_pReal Dotrho_DipFormation = 0.0_pReal
endif endif
if (dEq0(EdgeDipDistance-EdgeDipMinDistance(i))) then if (dEq0(EdgeDipDistance-EdgeDipMinDistance(i))) then
DotRhoEdgeDipClimb = 0.0_pReal Dotrho_dipClimb = 0.0_pReal
else else
ClimbVelocity = 3.0_pReal*prm%mu*VacancyDiffusion*prm%atomicVolume(i) & ClimbVelocity = 3.0_pReal*prm%mu*VacancyDiffusion*prm%atomicVolume(i) &
/ (2.0_pReal*PI*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance(i))) / (2.0_pReal*PI*kB*T*(EdgeDipDistance+EdgeDipMinDistance(i)))
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(i,of) & Dotrho_dipClimb = 4.0_pReal*ClimbVelocity*stt%rho_dip(i,of) &
/ (EdgeDipDistance-EdgeDipMinDistance(i)) / (EdgeDipDistance-EdgeDipMinDistance(i))
endif endif
endif significantSlipStress endif significantSlipStress
!* Spontaneous annihilation of 2 single edge dislocations !* Spontaneous annihilation of 2 single edge dislocations
DotRhoEdgeEdgeAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) & Dotrho_mobEdgeAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) &
* stt%rhoEdge(i,of)*abs(dot_gamma_sl(i)) * stt%rho_mob(i,of)*abs(dot_gamma_sl(i))
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent !* Spontaneous annihilation of a single edge dislocation with a dipole constituent
DotRhoEdgeDipAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) & Dotrho_dipAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) &
* stt%rhoEdgeDip(i,of)*abs(dot_gamma_sl(i)) * stt%rho_dip(i,of)*abs(dot_gamma_sl(i))
dot%rhoEdge(i,of) = DotRhoMultiplication(i)-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation dot%rho_mob(i,of) = DotRhoMultiplication(i)-Dotrho_DipFormation-Dotrho_mobEdgeAnnihilation
dot%rhoEdgeDip(i,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb dot%rho_dip(i,of) = Dotrho_DipFormation-Dotrho_dipAnnihilation-Dotrho_dipClimb
enddo slipState enddo slipState
call kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_twin) call kinetics_twin(Mp,T,dot_gamma_sl,instance,of,dot_gamma_twin)
dot%twinFraction(:,of) = f_unrotated*dot_gamma_twin/prm%shear_twin dot%f_tw(:,of) = f_unrotated*dot_gamma_twin/prm%shear_twin
call kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_trans) call kinetics_trans(Mp,T,dot_gamma_sl,instance,of,dot_gamma_tr)
dot%twinFraction(:,of) = f_unrotated*dot_gamma_trans dot%f_tw(:,of) = f_unrotated*dot_gamma_tr
end associate end associate
@ -875,7 +870,7 @@ end subroutine plastic_dislotwin_dotState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state !> @brief calculates derived quantities from state
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine plastic_dislotwin_dependentState(temperature,instance,of) subroutine plastic_dislotwin_dependentState(T,instance,of)
use math, only: & use math, only: &
PI PI
@ -884,7 +879,7 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
instance, & instance, &
of of
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
temperature T
integer :: & integer :: &
i i
@ -909,20 +904,20 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
stt => state(instance),& stt => state(instance),&
dst => microstructure(instance)) dst => microstructure(instance))
sumf_twin = sum(stt%twinFraction(1:prm%sum_N_tw,of)) sumf_twin = sum(stt%f_tw(1:prm%sum_N_tw,of))
sumf_trans = sum(stt%strainTransFraction(1:prm%sum_N_tr,of)) sumf_trans = sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
SFE = prm%SFE_0K + prm%dSFE_dT * Temperature SFE = prm%SFE_0K + prm%dSFE_dT * T
!* rescaled volume fraction for topology !* rescaled volume fraction for topology
fOverStacksize = stt%twinFraction(1:prm%sum_N_tw,of)/prm%twinsize !ToDo: this is per system fOverStacksize = stt%f_tw(1:prm%sum_N_tw,of)/prm%twinsize !ToDo: this is per system
ftransOverLamellarSize = sumf_trans/prm%lamellarsize !ToDo: But this not ... ftransOverLamellarSize = sumf_trans/prm%lamellarsize !ToDo: But this not ...
!Todo: Physically ok, but naming could be adjusted !Todo: Physically ok, but naming could be adjusted
forall (i = 1:prm%sum_N_sl) & forall (i = 1:prm%sum_N_sl) &
lambda_sl_sl_inv(i) = & lambda_sl_sl_inv(i) = &
sqrt(dot_product((stt%rhoEdge(1:prm%sum_N_sl,of)+stt%rhoEdgeDip(1:prm%sum_N_sl,of)),& sqrt(dot_product((stt%rho_mob(1:prm%sum_N_sl,of)+stt%rho_dip(1:prm%sum_N_sl,of)),&
prm%forestProjection(1:prm%sum_N_sl,i)))/prm%CLambdaSlip(i) ! change order and use matmul prm%forestProjection(1:prm%sum_N_sl,i)))/prm%CLambdaSlip(i) ! change order and use matmul
@ -949,22 +944,22 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
if ((prm%sum_N_tw > 0) .or. (prm%sum_N_tr > 0)) then ! ToDo: Change order if ((prm%sum_N_tw > 0) .or. (prm%sum_N_tr > 0)) then ! ToDo: Change order
dst%Lambda_sl(:,of) = & dst%Lambda_sl(:,of) = &
prm%GrainSize/(1.0_pReal+prm%GrainSize*& prm%D/(1.0_pReal+prm%D*&
(lambda_sl_sl_inv + lambda_sl_tw_inv + lambda_sl_tr_inv)) (lambda_sl_sl_inv + lambda_sl_tw_inv + lambda_sl_tr_inv))
else else
dst%Lambda_sl(:,of) = prm%GrainSize & dst%Lambda_sl(:,of) = prm%D &
/ (1.0_pReal+prm%GrainSize*lambda_sl_sl_inv) !!!!!! correct? / (1.0_pReal+prm%D*lambda_sl_sl_inv) !!!!!! correct?
endif endif
dst%Lambda_tw(:,of) = prm%Cmfptwin *prm%GrainSize/(1.0_pReal+prm%GrainSize*lambda_tw_tw_inv) dst%Lambda_tw(:,of) = prm%i_tw*prm%D/(1.0_pReal+prm%D*lambda_tw_tw_inv)
dst%Lambda_tr(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*lambda_tr_tr_inv) dst%Lambda_tr(:,of) = prm%i_tr*prm%D/(1.0_pReal+prm%D*lambda_tr_tr_inv)
!* threshold stress for dislocation motion !* threshold stress for dislocation motion
forall (i = 1:prm%sum_N_sl) dst%tau_pass(i,of) = & forall (i = 1:prm%sum_N_sl) dst%tau_pass(i,of) = &
prm%mu*prm%b_sl(i)*& prm%mu*prm%b_sl(i)*&
sqrt(dot_product(stt%rhoEdge(1:prm%sum_N_sl,of)+stt%rhoEdgeDip(1:prm%sum_N_sl,of),& sqrt(dot_product(stt%rho_mob(1:prm%sum_N_sl,of)+stt%rho_dip(1:prm%sum_N_sl,of),&
prm%h_sl_sl(:,i))) prm%h_sl_sl(:,i)))
!* threshold stress for growing twin/martensite !* threshold stress for growing twin/martensite
@ -977,15 +972,15 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
(prm%L0_trans*prm%b_sl) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%b_tr) ) (prm%L0_trans*prm%b_sl) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%b_tr) )
dst%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*dst%Lambda_tw(:,of)**2.0_pReal dst%f_tw(:,of) = (PI/4.0_pReal)*prm%twinsize*dst%Lambda_tw(:,of)**2.0_pReal
dst%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsize*dst%Lambda_tr(:,of)**2.0_pReal dst%f_tr(:,of) = (PI/4.0_pReal)*prm%lamellarsize*dst%Lambda_tr(:,of)**2.0_pReal
x0 = prm%mu*prm%b_tw**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip x0 = prm%mu*prm%b_tw**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip
dst%tau_r_twin(:,of) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0) dst%tau_r_tw(:,of) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0)
x0 = prm%mu*prm%b_tr**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip x0 = prm%mu*prm%b_tr**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip
dst%tau_r_trans(:,of) = prm%mu*prm%b_tr/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0) dst%tau_r_tr(:,of) = prm%mu*prm%b_tr/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0)
end associate end associate
@ -995,7 +990,7 @@ end subroutine plastic_dislotwin_dependentState
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results !> @brief return array of constitutive results
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postResults) function plastic_dislotwin_postResults(Mp,T,instance,of) result(postResults)
use prec, only: & use prec, only: &
tol_math_check, & tol_math_check, &
dEq0 dEq0
@ -1007,7 +1002,7 @@ function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postRe
real(pReal), dimension(3,3),intent(in) :: & real(pReal), dimension(3,3),intent(in) :: &
Mp !< 2nd Piola Kirchhoff stress tensor in Mandel notation Mp !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
temperature !< temperature at integration point T !< temperature at integration point
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of of
@ -1026,13 +1021,13 @@ function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postRe
select case(prm%outputID(o)) select case(prm%outputID(o))
case (rho_mob_ID) case (rho_mob_ID)
postResults(c+1:c+prm%sum_N_sl) = stt%rhoEdge(1:prm%sum_N_sl,of) postResults(c+1:c+prm%sum_N_sl) = stt%rho_mob(1:prm%sum_N_sl,of)
c = c + prm%sum_N_sl c = c + prm%sum_N_sl
case (rho_dip_ID) case (rho_dip_ID)
postResults(c+1:c+prm%sum_N_sl) = stt%rhoEdgeDip(1:prm%sum_N_sl,of) postResults(c+1:c+prm%sum_N_sl) = stt%rho_dip(1:prm%sum_N_sl,of)
c = c + prm%sum_N_sl c = c + prm%sum_N_sl
case (gamma_dot_sl_ID) case (gamma_dot_sl_ID)
call kinetics_slip(Mp,temperature,instance,of,postResults(c+1:c+prm%sum_N_sl)) call kinetics_slip(Mp,T,instance,of,postResults(c+1:c+prm%sum_N_sl))
c = c + prm%sum_N_sl c = c + prm%sum_N_sl
case (gamma_sl_ID) case (gamma_sl_ID)
postResults(c+1:c+prm%sum_N_sl) = stt%accshear_slip(1:prm%sum_N_sl,of) postResults(c+1:c+prm%sum_N_sl) = stt%accshear_slip(1:prm%sum_N_sl,of)
@ -1050,7 +1045,7 @@ function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postRe
c = c + prm%sum_N_sl c = c + prm%sum_N_sl
case (f_tw_ID) case (f_tw_ID)
postResults(c+1:c+prm%sum_N_tw) = stt%twinFraction(1:prm%sum_N_tw,of) postResults(c+1:c+prm%sum_N_tw) = stt%f_tw(1:prm%sum_N_tw,of)
c = c + prm%sum_N_tw c = c + prm%sum_N_tw
case (Lambda_tw_ID) case (Lambda_tw_ID)
postResults(c+1:c+prm%sum_N_tw) = dst%Lambda_tw(1:prm%sum_N_tw,of) postResults(c+1:c+prm%sum_N_tw) = dst%Lambda_tw(1:prm%sum_N_tw,of)
@ -1108,7 +1103,7 @@ end subroutine plastic_dislotwin_results
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to ! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
! have the optional arguments at the end ! have the optional arguments at the end
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure subroutine kinetics_slip(Mp,Temperature,instance,of, & pure subroutine kinetics_slip(Mp,T,instance,of, &
dot_gamma_sl,dgamma_dtau_slip,tau_slip) dot_gamma_sl,dgamma_dtau_slip,tau_slip)
use prec, only: & use prec, only: &
tol_math_check, & tol_math_check, &
@ -1120,7 +1115,7 @@ pure subroutine kinetics_slip(Mp,Temperature,instance,of, &
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress Mp !< Mandel stress
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
temperature !< temperature T !< temperature
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of of
@ -1155,22 +1150,22 @@ pure subroutine kinetics_slip(Mp,Temperature,instance,of, &
tau_eff = abs(tau)-dst%tau_pass(:,of) tau_eff = abs(tau)-dst%tau_pass(:,of)
significantStress: where(tau_eff > tol_math_check) significantStress: where(tau_eff > tol_math_check)
stressRatio = tau_eff/(prm%SolidSolutionStrength+prm%tau_peierls) stressRatio = tau_eff/prm%SolidSolutionStrength
StressRatio_p = stressRatio** prm%p StressRatio_p = stressRatio** prm%p
BoltzmannRatio = prm%Qedge/(kB*Temperature) BoltzmannRatio = prm%Delta_F/(kB*T)
v_wait_inverse = prm%v0**(-1.0_pReal) * exp(BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q) v_wait_inverse = prm%v0**(-1.0_pReal) * exp(BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q)
v_run_inverse = prm%B/(tau_eff*prm%b_sl) v_run_inverse = prm%B/(tau_eff*prm%b_sl)
dot_gamma_sl = sign(stt%rhoEdge(:,of)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau) dot_gamma_sl = sign(stt%rho_mob(:,of)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau)
dV_wait_inverse_dTau = v_wait_inverse * prm%p * prm%q * BoltzmannRatio & dV_wait_inverse_dTau = v_wait_inverse * prm%p * prm%q * BoltzmannRatio &
* (stressRatio**(prm%p-1.0_pReal)) & * (stressRatio**(prm%p-1.0_pReal)) &
* (1.0_pReal-StressRatio_p)**(prm%q-1.0_pReal) & * (1.0_pReal-StressRatio_p)**(prm%q-1.0_pReal) &
/ (prm%SolidSolutionStrength+prm%tau_peierls) / prm%SolidSolutionStrength
dV_run_inverse_dTau = v_run_inverse/tau_eff dV_run_inverse_dTau = v_run_inverse/tau_eff
dV_dTau = (dV_wait_inverse_dTau+dV_run_inverse_dTau) & dV_dTau = (dV_wait_inverse_dTau+dV_run_inverse_dTau) &
/ (v_wait_inverse+v_run_inverse)**2.0_pReal / (v_wait_inverse+v_run_inverse)**2.0_pReal
dgamma_dtau = dV_dTau*stt%rhoEdge(:,of)*prm%b_sl dgamma_dtau = dV_dTau*stt%rho_mob(:,of)*prm%b_sl
else where significantStress else where significantStress
dot_gamma_sl = 0.0_pReal dot_gamma_sl = 0.0_pReal
dgamma_dtau = 0.0_pReal dgamma_dtau = 0.0_pReal
@ -1187,7 +1182,7 @@ end subroutine kinetics_slip
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates shear rates on twin systems !> @brief calculates shear rates on twin systems
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,& pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,instance,of,&
dot_gamma_twin,dgamma_dtau_twin) dot_gamma_twin,dgamma_dtau_twin)
use prec, only: & use prec, only: &
tol_math_check, & tol_math_check, &
@ -1199,7 +1194,7 @@ pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,&
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress Mp !< Mandel stress
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
temperature !< temperature T !< temperature
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of of
@ -1226,12 +1221,12 @@ pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,&
isFCC: if (prm%fccTwinTransNucleation) then isFCC: if (prm%fccTwinTransNucleation) then
s1=prm%fcc_twinNucleationSlipPair(1,i) s1=prm%fcc_twinNucleationSlipPair(1,i)
s2=prm%fcc_twinNucleationSlipPair(2,i) s2=prm%fcc_twinNucleationSlipPair(2,i)
if (tau(i) < dst%tau_r_twin(i,of)) then if (tau(i) < dst%tau_r_tw(i,of)) then
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,of)+stt%rho_dip(s2,of))+&
abs(dot_gamma_sl(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,of)+stt%rho_dip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
(prm%L0_twin*prm%b_sl(i))*& (prm%L0_twin*prm%b_sl(i))*&
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (1.0_pReal-exp(-prm%VcrossSlip/(kB*T)*&
(dst%tau_r_twin(i,of)-tau))) (dst%tau_r_tw(i,of)-tau)))
else else
Ndot0=0.0_pReal Ndot0=0.0_pReal
end if end if
@ -1242,7 +1237,7 @@ pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,&
significantStress: where(tau > tol_math_check) significantStress: where(tau > tol_math_check)
StressRatio_r = (dst%threshold_stress_twin(:,of)/tau)**prm%r StressRatio_r = (dst%threshold_stress_twin(:,of)/tau)**prm%r
dot_gamma_twin = prm%shear_twin * dst%twinVolume(:,of) * Ndot0*exp(-StressRatio_r) dot_gamma_twin = prm%shear_twin * dst%f_tw(:,of) * Ndot0*exp(-StressRatio_r)
dgamma_dtau = (dot_gamma_twin*prm%r/tau)*StressRatio_r dgamma_dtau = (dot_gamma_twin*prm%r/tau)*StressRatio_r
else where significantStress else where significantStress
dot_gamma_twin = 0.0_pReal dot_gamma_twin = 0.0_pReal
@ -1259,8 +1254,8 @@ end subroutine kinetics_twin
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief calculates shear rates on twin systems !> @brief calculates shear rates on twin systems
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,& pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,instance,of,&
dot_gamma_trans,dgamma_dtau_trans) dot_gamma_tr,dgamma_dtau_trans)
use prec, only: & use prec, only: &
tol_math_check, & tol_math_check, &
dNeq0 dNeq0
@ -1271,7 +1266,7 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
real(pReal), dimension(3,3), intent(in) :: & real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress Mp !< Mandel stress
real(pReal), intent(in) :: & real(pReal), intent(in) :: &
temperature !< temperature T !< temperature
integer, intent(in) :: & integer, intent(in) :: &
instance, & instance, &
of of
@ -1279,7 +1274,7 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
dot_gamma_sl dot_gamma_sl
real(pReal), dimension(param(instance)%sum_N_tr), intent(out) :: & real(pReal), dimension(param(instance)%sum_N_tr), intent(out) :: &
dot_gamma_trans dot_gamma_tr
real(pReal), dimension(param(instance)%sum_N_tr), optional, intent(out) :: & real(pReal), dimension(param(instance)%sum_N_tr), optional, intent(out) :: &
dgamma_dtau_trans dgamma_dtau_trans
@ -1298,12 +1293,12 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
isFCC: if (prm%fccTwinTransNucleation) then isFCC: if (prm%fccTwinTransNucleation) then
s1=prm%fcc_twinNucleationSlipPair(1,i) s1=prm%fcc_twinNucleationSlipPair(1,i)
s2=prm%fcc_twinNucleationSlipPair(2,i) s2=prm%fcc_twinNucleationSlipPair(2,i)
if (tau(i) < dst%tau_r_trans(i,of)) then if (tau(i) < dst%tau_r_tr(i,of)) then
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,of)+stt%rho_dip(s2,of))+&
abs(dot_gamma_sl(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,of)+stt%rho_dip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
(prm%L0_trans*prm%b_sl(i))*& (prm%L0_trans*prm%b_sl(i))*&
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*& (1.0_pReal-exp(-prm%VcrossSlip/(kB*T)*&
(dst%tau_r_trans(i,of)-tau))) (dst%tau_r_tr(i,of)-tau)))
else else
Ndot0=0.0_pReal Ndot0=0.0_pReal
end if end if
@ -1314,10 +1309,10 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
significantStress: where(tau > tol_math_check) significantStress: where(tau > tol_math_check)
StressRatio_s = (dst%threshold_stress_trans(:,of)/tau)**prm%s StressRatio_s = (dst%threshold_stress_trans(:,of)/tau)**prm%s
dot_gamma_trans = dst%martensiteVolume(:,of) * Ndot0*exp(-StressRatio_s) dot_gamma_tr = dst%f_tr(:,of) * Ndot0*exp(-StressRatio_s)
dgamma_dtau = (dot_gamma_trans*prm%r/tau)*StressRatio_s dgamma_dtau = (dot_gamma_tr*prm%r/tau)*StressRatio_s
else where significantStress else where significantStress
dot_gamma_trans = 0.0_pReal dot_gamma_tr = 0.0_pReal
dgamma_dtau = 0.0_pReal dgamma_dtau = 0.0_pReal
end where significantStress end where significantStress