more renames
This commit is contained in:
parent
facef25f8e
commit
9936b382fd
|
@ -45,11 +45,11 @@ module plastic_dislotwin
|
|||
nu, &
|
||||
D0, & !< prefactor for self-diffusion coefficient
|
||||
Qsd, & !< activation energy for dislocation climb
|
||||
GrainSize, & !<grain size
|
||||
D, & !<grain size
|
||||
pShearBand, & !< p-exponent in shear band velocity
|
||||
qShearBand, & !< q-exponent in shear band velocity
|
||||
CEdgeDipMinDistance, & !<
|
||||
Cmfptwin, & !<
|
||||
i_tw, & !<
|
||||
SolidSolutionStrength, & !<strength due to elements in solid solution
|
||||
L0_twin, & !< Length of twin nuclei in Burgers vectors
|
||||
L0_trans, & !< Length of trans nuclei in Burgers vectors
|
||||
|
@ -58,14 +58,14 @@ module plastic_dislotwin
|
|||
VcrossSlip, & !< cross slip volume
|
||||
sbResistance, & !< value for shearband resistance (might become an internal state variable at some point)
|
||||
sbVelocity, & !< value for shearband velocity_0
|
||||
sbQedge, & !< value for shearband systems Qedge
|
||||
sbQedge, & !< activation energy for shear bands
|
||||
SFE_0K, & !< stacking fault energy at zero K
|
||||
dSFE_dT, & !< temperature dependance of stacking fault energy
|
||||
aTol_rho, & !< absolute tolerance for integration of dislocation density
|
||||
aTol_f_tw, & !< absolute tolerance for integration of twin volume fraction
|
||||
aTol_f_tr, & !< absolute tolerance for integration of trans volume fraction
|
||||
deltaG, & !< Free energy difference between austensite and martensite
|
||||
Cmfptrans, & !<
|
||||
i_tr, & !<
|
||||
transStackHeight !< Stack height of hex nucleus
|
||||
real(pReal), dimension(:), allocatable :: &
|
||||
rho_mob_0, & !< initial unipolar dislocation density per slip system
|
||||
|
@ -73,9 +73,8 @@ module plastic_dislotwin
|
|||
b_sl, & !< absolute length of burgers vector [m] for each slip system
|
||||
b_tw, & !< absolute length of burgers vector [m] for each twin system
|
||||
b_tr, & !< absolute length of burgers vector [m] for each transformation system
|
||||
Qedge,& !< activation energy for glide [J] for each slip system
|
||||
Delta_F,& !< activation energy for glide [J] for each slip system
|
||||
v0, & !< dislocation velocity prefactor [m/s] for each slip system
|
||||
tau_peierls,& !< Peierls stress [Pa] for each slip system
|
||||
Ndot0_twin, & !< twin nucleation rate [1/m³s] for each twin system
|
||||
Ndot0_trans, & !< trans nucleation rate [1/m³s] for each trans system
|
||||
twinsize, & !< twin thickness [m] for each twin system
|
||||
|
@ -106,13 +105,13 @@ module plastic_dislotwin
|
|||
C66_twin, &
|
||||
C66_trans
|
||||
integer :: &
|
||||
sum_N_sl, & !< total number of active slip system
|
||||
sum_N_tw, & !< total number of active twin system
|
||||
sum_N_tr !< total number of active transformation system
|
||||
sum_N_sl, & !< total number of active slip system
|
||||
sum_N_tw, & !< total number of active twin system
|
||||
sum_N_tr !< total number of active transformation system
|
||||
integer, dimension(:), allocatable :: &
|
||||
N_sl, & !< number of active slip systems for each family
|
||||
N_tw, & !< number of active twin systems for each family
|
||||
N_tr !< number of active transformation systems for each family
|
||||
N_tr !< number of active transformation systems for each family
|
||||
integer(kind(undefined_ID)), dimension(:), allocatable :: &
|
||||
outputID !< ID of each post result output
|
||||
logical :: &
|
||||
|
@ -122,10 +121,10 @@ module plastic_dislotwin
|
|||
|
||||
type, private :: tDislotwinState
|
||||
real(pReal), dimension(:,:), pointer :: &
|
||||
rhoEdge, &
|
||||
rhoEdgeDip, &
|
||||
rho_mob, &
|
||||
rho_dip, &
|
||||
accshear_slip, &
|
||||
twinFraction, &
|
||||
f_tw, &
|
||||
strainTransFraction
|
||||
end type tDislotwinState
|
||||
|
||||
|
@ -137,10 +136,10 @@ module plastic_dislotwin
|
|||
tau_pass, &
|
||||
threshold_stress_twin, &
|
||||
threshold_stress_trans, &
|
||||
twinVolume, &
|
||||
martensiteVolume, &
|
||||
tau_r_twin, & !< stress to bring partials close together (twin)
|
||||
tau_r_trans !< stress to bring partials close together (trans)
|
||||
f_tw, &
|
||||
f_tr, &
|
||||
tau_r_tw, & !< stress to bring partials close together (twin)
|
||||
tau_r_tr !< stress to bring partials close together (trans)
|
||||
end type tDislotwinMicrostructure
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
|
@ -284,14 +283,12 @@ subroutine plastic_dislotwin_init
|
|||
prm%rho_dip_0 = config%getFloats('rhoedgedip0',requiredSize=size(prm%N_sl))
|
||||
prm%v0 = config%getFloats('v0', requiredSize=size(prm%N_sl))
|
||||
prm%b_sl = config%getFloats('slipburgers',requiredSize=size(prm%N_sl))
|
||||
prm%Qedge = config%getFloats('qedge', requiredSize=size(prm%N_sl)) !ToDo: rename (ask Karo)
|
||||
prm%Delta_F = config%getFloats('qedge', requiredSize=size(prm%N_sl))
|
||||
prm%CLambdaSlip = config%getFloats('clambdaslip',requiredSize=size(prm%N_sl))
|
||||
prm%p = config%getFloats('p_slip', requiredSize=size(prm%N_sl))
|
||||
prm%q = config%getFloats('q_slip', requiredSize=size(prm%N_sl))
|
||||
prm%B = config%getFloats('b', requiredSize=size(prm%N_sl), &
|
||||
defaultVal=[(0.0_pReal, i=1,size(prm%N_sl))])
|
||||
prm%tau_peierls = config%getFloats('tau_peierls',requiredSize=size(prm%N_sl), &
|
||||
defaultVal=[(0.0_pReal, i=1,size(prm%N_sl))]) ! Deprecated
|
||||
|
||||
prm%CEdgeDipMinDistance = config%getFloat('cedgedipmindistance')
|
||||
prm%D0 = config%getFloat('d0')
|
||||
|
@ -303,12 +300,11 @@ subroutine plastic_dislotwin_init
|
|||
prm%rho_dip_0 = math_expand(prm%rho_dip_0, prm%N_sl)
|
||||
prm%v0 = math_expand(prm%v0, prm%N_sl)
|
||||
prm%b_sl = math_expand(prm%b_sl,prm%N_sl)
|
||||
prm%Qedge = math_expand(prm%Qedge, prm%N_sl)
|
||||
prm%Delta_F = math_expand(prm%Delta_F, prm%N_sl)
|
||||
prm%CLambdaSlip = math_expand(prm%CLambdaSlip, prm%N_sl)
|
||||
prm%p = math_expand(prm%p, prm%N_sl)
|
||||
prm%q = math_expand(prm%q, prm%N_sl)
|
||||
prm%B = math_expand(prm%B, prm%N_sl)
|
||||
prm%tau_peierls = math_expand(prm%tau_peierls, prm%N_sl)
|
||||
prm%atomicVolume = math_expand(prm%atomicVolume,prm%N_sl)
|
||||
|
||||
! sanity checks
|
||||
|
@ -318,10 +314,9 @@ subroutine plastic_dislotwin_init
|
|||
if (any(prm%rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0'
|
||||
if (any(prm%v0 < 0.0_pReal)) extmsg = trim(extmsg)//' v0'
|
||||
if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl'
|
||||
if (any(prm%Qedge <= 0.0_pReal)) extmsg = trim(extmsg)//' Qedge'
|
||||
if (any(prm%Delta_F <= 0.0_pReal)) extmsg = trim(extmsg)//' Delta_F'
|
||||
if (any(prm%CLambdaSlip <= 0.0_pReal)) extmsg = trim(extmsg)//' CLambdaSlip'
|
||||
if (any(prm%B < 0.0_pReal)) extmsg = trim(extmsg)//' B'
|
||||
if (any(prm%tau_peierls < 0.0_pReal)) extmsg = trim(extmsg)//' tau_peierls'
|
||||
if (any(prm%p<=0.0_pReal .or. prm%p>1.0_pReal)) extmsg = trim(extmsg)//' p'
|
||||
if (any(prm%q< 1.0_pReal .or. prm%q>2.0_pReal)) extmsg = trim(extmsg)//' q'
|
||||
|
||||
|
@ -344,9 +339,9 @@ subroutine plastic_dislotwin_init
|
|||
prm%twinsize = config%getFloats('twinsize', requiredSize=size(prm%N_tw))
|
||||
prm%r = config%getFloats('r_twin', requiredSize=size(prm%N_tw))
|
||||
|
||||
prm%xc_twin = config%getFloat('xc_twin')
|
||||
prm%L0_twin = config%getFloat('l0_twin')
|
||||
prm%Cmfptwin = config%getFloat('cmfptwin', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||||
prm%xc_twin = config%getFloat('xc_twin')
|
||||
prm%L0_twin = config%getFloat('l0_twin')
|
||||
prm%i_tw = config%getFloat('cmfptwin')
|
||||
|
||||
prm%shear_twin = lattice_characteristicShear_Twin(prm%N_tw,config%getString('lattice_structure'),&
|
||||
config%getFloat('c/a',defaultVal=0.0_pReal))
|
||||
|
@ -379,7 +374,7 @@ subroutine plastic_dislotwin_init
|
|||
prm%b_tr = math_expand(prm%b_tr,prm%N_tr)
|
||||
|
||||
prm%transStackHeight = config%getFloat('transstackheight', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||||
prm%Cmfptrans = config%getFloat('cmfptrans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||||
prm%i_tr = config%getFloat('cmfptrans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||||
prm%deltaG = config%getFloat('deltag')
|
||||
prm%xc_trans = config%getFloat('xc_trans', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||||
prm%L0_trans = config%getFloat('l0_trans')
|
||||
|
@ -451,7 +446,7 @@ subroutine plastic_dislotwin_init
|
|||
|
||||
|
||||
|
||||
prm%GrainSize = config%getFloat('grainsize')
|
||||
prm%D = config%getFloat('grainsize')
|
||||
prm%SolidSolutionStrength = config%getFloat('solidsolutionstrength') ! Deprecated
|
||||
|
||||
if (config%keyExists('dipoleformationfactor')) call IO_error(1,ext_msg='use /nodipoleformation/')
|
||||
|
@ -531,9 +526,9 @@ subroutine plastic_dislotwin_init
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
NipcMyPhase = count(material_phase == p)
|
||||
sizeDotState = size(['rho ','rhoDip ','accshearslip']) * prm%sum_N_sl &
|
||||
+ size(['twinFraction']) * prm%sum_N_tw &
|
||||
+ size(['strainTransFraction']) * prm%sum_N_tr
|
||||
sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl &
|
||||
+ size(['f_tw']) * prm%sum_N_tw &
|
||||
+ size(['f_tr']) * prm%sum_N_tr
|
||||
sizeState = sizeDotState
|
||||
|
||||
call material_allocatePlasticState(p,NipcMyPhase,sizeState,sizeDotState,0, &
|
||||
|
@ -545,16 +540,16 @@ subroutine plastic_dislotwin_init
|
|||
! locally defined state aliases and initialization of state0 and aTolState
|
||||
startIndex = 1
|
||||
endIndex = prm%sum_N_sl
|
||||
stt%rhoEdge=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%rhoEdge= spread(prm%rho_mob_0,2,NipcMyPhase)
|
||||
dot%rhoEdge=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%rho_mob=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%rho_mob= spread(prm%rho_mob_0,2,NipcMyPhase)
|
||||
dot%rho_mob=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_rho
|
||||
|
||||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_sl
|
||||
stt%rhoEdgeDip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%rhoEdgeDip= spread(prm%rho_dip_0,2,NipcMyPhase)
|
||||
dot%rhoEdgeDip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%rho_dip=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
stt%rho_dip= spread(prm%rho_dip_0,2,NipcMyPhase)
|
||||
dot%rho_dip=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_rho
|
||||
|
||||
startIndex = endIndex + 1
|
||||
|
@ -568,8 +563,8 @@ subroutine plastic_dislotwin_init
|
|||
|
||||
startIndex = endIndex + 1
|
||||
endIndex = endIndex + prm%sum_N_tw
|
||||
stt%twinFraction=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dot%twinFraction=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
stt%f_tw=>plasticState(p)%state(startIndex:endIndex,:)
|
||||
dot%f_tw=>plasticState(p)%dotState(startIndex:endIndex,:)
|
||||
plasticState(p)%aTolState(startIndex:endIndex) = prm%aTol_f_tw
|
||||
|
||||
startIndex = endIndex + 1
|
||||
|
@ -583,13 +578,13 @@ subroutine plastic_dislotwin_init
|
|||
|
||||
allocate(dst%Lambda_tw (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%threshold_stress_twin (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%tau_r_twin (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%twinVolume (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%tau_r_tw (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%f_tw (prm%sum_N_tw, NipcMyPhase),source=0.0_pReal)
|
||||
|
||||
allocate(dst%Lambda_tr (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%threshold_stress_trans(prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%tau_r_trans (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%martensiteVolume (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%tau_r_tr (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
|
||||
allocate(dst%f_tr (prm%sum_N_tr,NipcMyPhase),source=0.0_pReal)
|
||||
|
||||
|
||||
plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally
|
||||
|
@ -627,13 +622,13 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el) result(homogenizedC)
|
|||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
f_unrotated = 1.0_pReal &
|
||||
- sum(stt%twinFraction(1:prm%sum_N_tw,of)) &
|
||||
- sum(stt%f_tw(1:prm%sum_N_tw,of)) &
|
||||
- sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
|
||||
|
||||
homogenizedC = f_unrotated * prm%C66
|
||||
do i=1,prm%sum_N_tw
|
||||
homogenizedC = homogenizedC &
|
||||
+ stt%twinFraction(i,of)*prm%C66_twin(1:6,1:6,i)
|
||||
+ stt%f_tw(i,of)*prm%C66_twin(1:6,1:6,i)
|
||||
enddo
|
||||
do i=1,prm%sum_N_tr
|
||||
homogenizedC = homogenizedC &
|
||||
|
@ -648,7 +643,7 @@ end function plastic_dislotwin_homogenizedC
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates plastic velocity gradient and its tangent
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,of)
|
||||
subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,T,instance,of)
|
||||
use prec, only: &
|
||||
tol_math_check, &
|
||||
dNeq0
|
||||
|
@ -664,7 +659,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
|
|||
real(pReal), dimension(3,3,3,3), intent(out) :: dLp_dMp
|
||||
real(pReal), dimension(3,3), intent(in) :: Mp
|
||||
integer, intent(in) :: instance,of
|
||||
real(pReal), intent(in) :: Temperature
|
||||
real(pReal), intent(in) :: T
|
||||
|
||||
integer :: i,k,l,m,n
|
||||
real(pReal) :: f_unrotated,StressRatio_p,&
|
||||
|
@ -676,7 +671,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
|
|||
real(pReal), dimension(param(instance)%sum_N_tw) :: &
|
||||
dot_gamma_twin,dgamma_dtau_twin
|
||||
real(pReal), dimension(param(instance)%sum_N_tr) :: &
|
||||
dot_gamma_trans,dgamma_dtau_trans
|
||||
dot_gamma_tr,dgamma_dtau_trans
|
||||
real(pReal):: dot_gamma_sb
|
||||
real(pReal), dimension(3,3) :: eigVectors, Schmid_shearBand
|
||||
real(pReal), dimension(3) :: eigValues
|
||||
|
@ -704,13 +699,13 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
|
|||
associate(prm => param(instance), stt => state(instance))
|
||||
|
||||
f_unrotated = 1.0_pReal &
|
||||
- sum(stt%twinFraction(1:prm%sum_N_tw,of)) &
|
||||
- sum(stt%f_tw(1:prm%sum_N_tw,of)) &
|
||||
- sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dMp = 0.0_pReal
|
||||
|
||||
call kinetics_slip(Mp,temperature,instance,of,dot_gamma_sl,dgamma_dtau_slip)
|
||||
call kinetics_slip(Mp,T,instance,of,dot_gamma_sl,dgamma_dtau_slip)
|
||||
slipContribution: do i = 1, prm%sum_N_sl
|
||||
Lp = Lp + dot_gamma_sl(i)*prm%Schmid_slip(1:3,1:3,i)
|
||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||
|
@ -724,7 +719,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
|
|||
|
||||
shearBandingContribution: if(dNeq0(prm%sbVelocity)) then
|
||||
|
||||
BoltzmannRatio = prm%sbQedge/(kB*Temperature)
|
||||
BoltzmannRatio = prm%sbQedge/(kB*T)
|
||||
call math_eigenValuesVectorsSym(Mp,eigValues,eigVectors,error)
|
||||
|
||||
do i = 1,6
|
||||
|
@ -748,7 +743,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
|
|||
|
||||
endif shearBandingContribution
|
||||
|
||||
call kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_twin,dgamma_dtau_twin)
|
||||
call kinetics_twin(Mp,T,dot_gamma_sl,instance,of,dot_gamma_twin,dgamma_dtau_twin)
|
||||
twinContibution: do i = 1, prm%sum_N_tw
|
||||
Lp = Lp + dot_gamma_twin(i)*prm%Schmid_twin(1:3,1:3,i) * f_unrotated
|
||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||
|
@ -756,9 +751,9 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dMp,Mp,Temperature,instance,
|
|||
+ dgamma_dtau_twin(i)* prm%Schmid_twin(k,l,i)*prm%Schmid_twin(m,n,i) * f_unrotated
|
||||
enddo twinContibution
|
||||
|
||||
call kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_trans,dgamma_dtau_trans)
|
||||
call kinetics_twin(Mp,T,dot_gamma_sl,instance,of,dot_gamma_tr,dgamma_dtau_trans)
|
||||
transContibution: do i = 1, prm%sum_N_tr
|
||||
Lp = Lp + dot_gamma_trans(i)*prm%Schmid_trans(1:3,1:3,i) * f_unrotated
|
||||
Lp = Lp + dot_gamma_tr(i)*prm%Schmid_trans(1:3,1:3,i) * f_unrotated
|
||||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||||
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
||||
+ dgamma_dtau_trans(i)* prm%Schmid_trans(k,l,i)*prm%Schmid_trans(m,n,i) * f_unrotated
|
||||
|
@ -773,7 +768,7 @@ end subroutine plastic_dislotwin_LpAndItsTangent
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates the rate of change of microstructure
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
|
||||
subroutine plastic_dislotwin_dotState(Mp,T,instance,of)
|
||||
use prec, only: &
|
||||
tol_math_check, &
|
||||
dEq0
|
||||
|
@ -788,7 +783,7 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
|
|||
real(pReal), dimension(3,3), intent(in):: &
|
||||
Mp !< Mandel stress
|
||||
real(pReal), intent(in) :: &
|
||||
temperature !< temperature at integration point
|
||||
T !< temperature at integration point
|
||||
integer, intent(in) :: &
|
||||
instance, &
|
||||
of
|
||||
|
@ -796,8 +791,8 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
|
|||
integer :: i
|
||||
real(pReal) :: f_unrotated,&
|
||||
VacancyDiffusion,&
|
||||
EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, &
|
||||
DotRhoDipFormation,DotRhoEdgeEdgeAnnihilation, &
|
||||
EdgeDipDistance, ClimbVelocity,Dotrho_dipClimb,Dotrho_dipAnnihilation, &
|
||||
Dotrho_DipFormation,Dotrho_mobEdgeAnnihilation, &
|
||||
tau
|
||||
real(pReal), dimension(param(instance)%sum_N_sl) :: &
|
||||
EdgeDipMinDistance, &
|
||||
|
@ -806,17 +801,17 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
|
|||
real(pReal), dimension(param(instance)%sum_N_tw) :: &
|
||||
dot_gamma_twin
|
||||
real(pReal), dimension(param(instance)%sum_N_tr) :: &
|
||||
dot_gamma_trans
|
||||
dot_gamma_tr
|
||||
|
||||
associate(prm => param(instance), stt => state(instance), &
|
||||
dot => dotstate(instance), dst => microstructure(instance))
|
||||
|
||||
f_unrotated = 1.0_pReal &
|
||||
- sum(stt%twinFraction(1:prm%sum_N_tw,of)) &
|
||||
- sum(stt%f_tw(1:prm%sum_N_tw,of)) &
|
||||
- sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
|
||||
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
||||
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*T))
|
||||
|
||||
call kinetics_slip(Mp,temperature,instance,of,dot_gamma_sl)
|
||||
call kinetics_slip(Mp,T,instance,of,dot_gamma_sl)
|
||||
dot%accshear_slip(:,of) = abs(dot_gamma_sl)
|
||||
|
||||
DotRhoMultiplication = abs(dot_gamma_sl)/(prm%b_sl*dst%Lambda_sl(:,of))
|
||||
|
@ -826,46 +821,46 @@ subroutine plastic_dislotwin_dotState(Mp,Temperature,instance,of)
|
|||
tau = math_mul33xx33(Mp,prm%Schmid_slip(1:3,1:3,i))
|
||||
|
||||
significantSlipStress: if (dEq0(tau)) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
Dotrho_DipFormation = 0.0_pReal
|
||||
Dotrho_dipClimb = 0.0_pReal
|
||||
else significantSlipStress
|
||||
EdgeDipDistance = 3.0_pReal*prm%mu*prm%b_sl(i)/(16.0_pReal*PI*abs(tau))
|
||||
EdgeDipDistance = math_clip(EdgeDipDistance, right = dst%Lambda_sl(i,of))
|
||||
EdgeDipDistance = math_clip(EdgeDipDistance, left = EdgeDipMinDistance(i))
|
||||
|
||||
if (prm%dipoleFormation) then
|
||||
DotRhoDipFormation = 2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance(i))/prm%b_sl(i) &
|
||||
* stt%rhoEdge(i,of)*abs(dot_gamma_sl(i))
|
||||
Dotrho_DipFormation = 2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance(i))/prm%b_sl(i) &
|
||||
* stt%rho_mob(i,of)*abs(dot_gamma_sl(i))
|
||||
else
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
Dotrho_DipFormation = 0.0_pReal
|
||||
endif
|
||||
|
||||
if (dEq0(EdgeDipDistance-EdgeDipMinDistance(i))) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
Dotrho_dipClimb = 0.0_pReal
|
||||
else
|
||||
ClimbVelocity = 3.0_pReal*prm%mu*VacancyDiffusion*prm%atomicVolume(i) &
|
||||
/ (2.0_pReal*PI*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance(i)))
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(i,of) &
|
||||
/ (2.0_pReal*PI*kB*T*(EdgeDipDistance+EdgeDipMinDistance(i)))
|
||||
Dotrho_dipClimb = 4.0_pReal*ClimbVelocity*stt%rho_dip(i,of) &
|
||||
/ (EdgeDipDistance-EdgeDipMinDistance(i))
|
||||
endif
|
||||
endif significantSlipStress
|
||||
|
||||
!* Spontaneous annihilation of 2 single edge dislocations
|
||||
DotRhoEdgeEdgeAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) &
|
||||
* stt%rhoEdge(i,of)*abs(dot_gamma_sl(i))
|
||||
Dotrho_mobEdgeAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) &
|
||||
* stt%rho_mob(i,of)*abs(dot_gamma_sl(i))
|
||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||
DotRhoEdgeDipAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) &
|
||||
* stt%rhoEdgeDip(i,of)*abs(dot_gamma_sl(i))
|
||||
Dotrho_dipAnnihilation = 2.0_pReal*EdgeDipMinDistance(i)/prm%b_sl(i) &
|
||||
* stt%rho_dip(i,of)*abs(dot_gamma_sl(i))
|
||||
|
||||
dot%rhoEdge(i,of) = DotRhoMultiplication(i)-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||
dot%rhoEdgeDip(i,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||
dot%rho_mob(i,of) = DotRhoMultiplication(i)-Dotrho_DipFormation-Dotrho_mobEdgeAnnihilation
|
||||
dot%rho_dip(i,of) = Dotrho_DipFormation-Dotrho_dipAnnihilation-Dotrho_dipClimb
|
||||
enddo slipState
|
||||
|
||||
call kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_twin)
|
||||
dot%twinFraction(:,of) = f_unrotated*dot_gamma_twin/prm%shear_twin
|
||||
call kinetics_twin(Mp,T,dot_gamma_sl,instance,of,dot_gamma_twin)
|
||||
dot%f_tw(:,of) = f_unrotated*dot_gamma_twin/prm%shear_twin
|
||||
|
||||
call kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,dot_gamma_trans)
|
||||
dot%twinFraction(:,of) = f_unrotated*dot_gamma_trans
|
||||
call kinetics_trans(Mp,T,dot_gamma_sl,instance,of,dot_gamma_tr)
|
||||
dot%f_tw(:,of) = f_unrotated*dot_gamma_tr
|
||||
|
||||
end associate
|
||||
|
||||
|
@ -875,7 +870,7 @@ end subroutine plastic_dislotwin_dotState
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates derived quantities from state
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_dislotwin_dependentState(temperature,instance,of)
|
||||
subroutine plastic_dislotwin_dependentState(T,instance,of)
|
||||
use math, only: &
|
||||
PI
|
||||
|
||||
|
@ -884,7 +879,7 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
|
|||
instance, &
|
||||
of
|
||||
real(pReal), intent(in) :: &
|
||||
temperature
|
||||
T
|
||||
|
||||
integer :: &
|
||||
i
|
||||
|
@ -909,20 +904,20 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
|
|||
stt => state(instance),&
|
||||
dst => microstructure(instance))
|
||||
|
||||
sumf_twin = sum(stt%twinFraction(1:prm%sum_N_tw,of))
|
||||
sumf_twin = sum(stt%f_tw(1:prm%sum_N_tw,of))
|
||||
sumf_trans = sum(stt%strainTransFraction(1:prm%sum_N_tr,of))
|
||||
|
||||
SFE = prm%SFE_0K + prm%dSFE_dT * Temperature
|
||||
SFE = prm%SFE_0K + prm%dSFE_dT * T
|
||||
|
||||
!* rescaled volume fraction for topology
|
||||
fOverStacksize = stt%twinFraction(1:prm%sum_N_tw,of)/prm%twinsize !ToDo: this is per system
|
||||
fOverStacksize = stt%f_tw(1:prm%sum_N_tw,of)/prm%twinsize !ToDo: this is per system
|
||||
ftransOverLamellarSize = sumf_trans/prm%lamellarsize !ToDo: But this not ...
|
||||
!Todo: Physically ok, but naming could be adjusted
|
||||
|
||||
|
||||
forall (i = 1:prm%sum_N_sl) &
|
||||
lambda_sl_sl_inv(i) = &
|
||||
sqrt(dot_product((stt%rhoEdge(1:prm%sum_N_sl,of)+stt%rhoEdgeDip(1:prm%sum_N_sl,of)),&
|
||||
sqrt(dot_product((stt%rho_mob(1:prm%sum_N_sl,of)+stt%rho_dip(1:prm%sum_N_sl,of)),&
|
||||
prm%forestProjection(1:prm%sum_N_sl,i)))/prm%CLambdaSlip(i) ! change order and use matmul
|
||||
|
||||
|
||||
|
@ -949,22 +944,22 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
|
|||
|
||||
if ((prm%sum_N_tw > 0) .or. (prm%sum_N_tr > 0)) then ! ToDo: Change order
|
||||
dst%Lambda_sl(:,of) = &
|
||||
prm%GrainSize/(1.0_pReal+prm%GrainSize*&
|
||||
prm%D/(1.0_pReal+prm%D*&
|
||||
(lambda_sl_sl_inv + lambda_sl_tw_inv + lambda_sl_tr_inv))
|
||||
else
|
||||
dst%Lambda_sl(:,of) = prm%GrainSize &
|
||||
/ (1.0_pReal+prm%GrainSize*lambda_sl_sl_inv) !!!!!! correct?
|
||||
dst%Lambda_sl(:,of) = prm%D &
|
||||
/ (1.0_pReal+prm%D*lambda_sl_sl_inv) !!!!!! correct?
|
||||
endif
|
||||
|
||||
|
||||
|
||||
dst%Lambda_tw(:,of) = prm%Cmfptwin *prm%GrainSize/(1.0_pReal+prm%GrainSize*lambda_tw_tw_inv)
|
||||
dst%Lambda_tr(:,of) = prm%Cmfptrans*prm%GrainSize/(1.0_pReal+prm%GrainSize*lambda_tr_tr_inv)
|
||||
dst%Lambda_tw(:,of) = prm%i_tw*prm%D/(1.0_pReal+prm%D*lambda_tw_tw_inv)
|
||||
dst%Lambda_tr(:,of) = prm%i_tr*prm%D/(1.0_pReal+prm%D*lambda_tr_tr_inv)
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (i = 1:prm%sum_N_sl) dst%tau_pass(i,of) = &
|
||||
prm%mu*prm%b_sl(i)*&
|
||||
sqrt(dot_product(stt%rhoEdge(1:prm%sum_N_sl,of)+stt%rhoEdgeDip(1:prm%sum_N_sl,of),&
|
||||
sqrt(dot_product(stt%rho_mob(1:prm%sum_N_sl,of)+stt%rho_dip(1:prm%sum_N_sl,of),&
|
||||
prm%h_sl_sl(:,i)))
|
||||
|
||||
!* threshold stress for growing twin/martensite
|
||||
|
@ -977,15 +972,15 @@ subroutine plastic_dislotwin_dependentState(temperature,instance,of)
|
|||
(prm%L0_trans*prm%b_sl) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%b_tr) )
|
||||
|
||||
|
||||
dst%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*dst%Lambda_tw(:,of)**2.0_pReal
|
||||
dst%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsize*dst%Lambda_tr(:,of)**2.0_pReal
|
||||
dst%f_tw(:,of) = (PI/4.0_pReal)*prm%twinsize*dst%Lambda_tw(:,of)**2.0_pReal
|
||||
dst%f_tr(:,of) = (PI/4.0_pReal)*prm%lamellarsize*dst%Lambda_tr(:,of)**2.0_pReal
|
||||
|
||||
|
||||
x0 = prm%mu*prm%b_tw**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip
|
||||
dst%tau_r_twin(:,of) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0)
|
||||
dst%tau_r_tw(:,of) = prm%mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0)
|
||||
|
||||
x0 = prm%mu*prm%b_tr**2.0_pReal/(SFE*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu) ! ToDo: In the paper, this is the burgers vector for slip
|
||||
dst%tau_r_trans(:,of) = prm%mu*prm%b_tr/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0)
|
||||
dst%tau_r_tr(:,of) = prm%mu*prm%b_tr/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0)
|
||||
|
||||
end associate
|
||||
|
||||
|
@ -995,7 +990,7 @@ end subroutine plastic_dislotwin_dependentState
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief return array of constitutive results
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postResults)
|
||||
function plastic_dislotwin_postResults(Mp,T,instance,of) result(postResults)
|
||||
use prec, only: &
|
||||
tol_math_check, &
|
||||
dEq0
|
||||
|
@ -1007,7 +1002,7 @@ function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postRe
|
|||
real(pReal), dimension(3,3),intent(in) :: &
|
||||
Mp !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
real(pReal), intent(in) :: &
|
||||
temperature !< temperature at integration point
|
||||
T !< temperature at integration point
|
||||
integer, intent(in) :: &
|
||||
instance, &
|
||||
of
|
||||
|
@ -1026,13 +1021,13 @@ function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postRe
|
|||
select case(prm%outputID(o))
|
||||
|
||||
case (rho_mob_ID)
|
||||
postResults(c+1:c+prm%sum_N_sl) = stt%rhoEdge(1:prm%sum_N_sl,of)
|
||||
postResults(c+1:c+prm%sum_N_sl) = stt%rho_mob(1:prm%sum_N_sl,of)
|
||||
c = c + prm%sum_N_sl
|
||||
case (rho_dip_ID)
|
||||
postResults(c+1:c+prm%sum_N_sl) = stt%rhoEdgeDip(1:prm%sum_N_sl,of)
|
||||
postResults(c+1:c+prm%sum_N_sl) = stt%rho_dip(1:prm%sum_N_sl,of)
|
||||
c = c + prm%sum_N_sl
|
||||
case (gamma_dot_sl_ID)
|
||||
call kinetics_slip(Mp,temperature,instance,of,postResults(c+1:c+prm%sum_N_sl))
|
||||
call kinetics_slip(Mp,T,instance,of,postResults(c+1:c+prm%sum_N_sl))
|
||||
c = c + prm%sum_N_sl
|
||||
case (gamma_sl_ID)
|
||||
postResults(c+1:c+prm%sum_N_sl) = stt%accshear_slip(1:prm%sum_N_sl,of)
|
||||
|
@ -1050,7 +1045,7 @@ function plastic_dislotwin_postResults(Mp,Temperature,instance,of) result(postRe
|
|||
c = c + prm%sum_N_sl
|
||||
|
||||
case (f_tw_ID)
|
||||
postResults(c+1:c+prm%sum_N_tw) = stt%twinFraction(1:prm%sum_N_tw,of)
|
||||
postResults(c+1:c+prm%sum_N_tw) = stt%f_tw(1:prm%sum_N_tw,of)
|
||||
c = c + prm%sum_N_tw
|
||||
case (Lambda_tw_ID)
|
||||
postResults(c+1:c+prm%sum_N_tw) = dst%Lambda_tw(1:prm%sum_N_tw,of)
|
||||
|
@ -1108,7 +1103,7 @@ end subroutine plastic_dislotwin_results
|
|||
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
|
||||
! have the optional arguments at the end
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine kinetics_slip(Mp,Temperature,instance,of, &
|
||||
pure subroutine kinetics_slip(Mp,T,instance,of, &
|
||||
dot_gamma_sl,dgamma_dtau_slip,tau_slip)
|
||||
use prec, only: &
|
||||
tol_math_check, &
|
||||
|
@ -1120,7 +1115,7 @@ pure subroutine kinetics_slip(Mp,Temperature,instance,of, &
|
|||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
real(pReal), intent(in) :: &
|
||||
temperature !< temperature
|
||||
T !< temperature
|
||||
integer, intent(in) :: &
|
||||
instance, &
|
||||
of
|
||||
|
@ -1155,22 +1150,22 @@ pure subroutine kinetics_slip(Mp,Temperature,instance,of, &
|
|||
tau_eff = abs(tau)-dst%tau_pass(:,of)
|
||||
|
||||
significantStress: where(tau_eff > tol_math_check)
|
||||
stressRatio = tau_eff/(prm%SolidSolutionStrength+prm%tau_peierls)
|
||||
stressRatio = tau_eff/prm%SolidSolutionStrength
|
||||
StressRatio_p = stressRatio** prm%p
|
||||
BoltzmannRatio = prm%Qedge/(kB*Temperature)
|
||||
BoltzmannRatio = prm%Delta_F/(kB*T)
|
||||
v_wait_inverse = prm%v0**(-1.0_pReal) * exp(BoltzmannRatio*(1.0_pReal-StressRatio_p)** prm%q)
|
||||
v_run_inverse = prm%B/(tau_eff*prm%b_sl)
|
||||
|
||||
dot_gamma_sl = sign(stt%rhoEdge(:,of)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau)
|
||||
dot_gamma_sl = sign(stt%rho_mob(:,of)*prm%b_sl/(v_wait_inverse+v_run_inverse),tau)
|
||||
|
||||
dV_wait_inverse_dTau = v_wait_inverse * prm%p * prm%q * BoltzmannRatio &
|
||||
* (stressRatio**(prm%p-1.0_pReal)) &
|
||||
* (1.0_pReal-StressRatio_p)**(prm%q-1.0_pReal) &
|
||||
/ (prm%SolidSolutionStrength+prm%tau_peierls)
|
||||
/ prm%SolidSolutionStrength
|
||||
dV_run_inverse_dTau = v_run_inverse/tau_eff
|
||||
dV_dTau = (dV_wait_inverse_dTau+dV_run_inverse_dTau) &
|
||||
/ (v_wait_inverse+v_run_inverse)**2.0_pReal
|
||||
dgamma_dtau = dV_dTau*stt%rhoEdge(:,of)*prm%b_sl
|
||||
dgamma_dtau = dV_dTau*stt%rho_mob(:,of)*prm%b_sl
|
||||
else where significantStress
|
||||
dot_gamma_sl = 0.0_pReal
|
||||
dgamma_dtau = 0.0_pReal
|
||||
|
@ -1187,7 +1182,7 @@ end subroutine kinetics_slip
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates shear rates on twin systems
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,&
|
||||
pure subroutine kinetics_twin(Mp,T,dot_gamma_sl,instance,of,&
|
||||
dot_gamma_twin,dgamma_dtau_twin)
|
||||
use prec, only: &
|
||||
tol_math_check, &
|
||||
|
@ -1199,7 +1194,7 @@ pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,&
|
|||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
real(pReal), intent(in) :: &
|
||||
temperature !< temperature
|
||||
T !< temperature
|
||||
integer, intent(in) :: &
|
||||
instance, &
|
||||
of
|
||||
|
@ -1226,12 +1221,12 @@ pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,&
|
|||
isFCC: if (prm%fccTwinTransNucleation) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||||
if (tau(i) < dst%tau_r_twin(i,of)) then
|
||||
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(dot_gamma_sl(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
|
||||
if (tau(i) < dst%tau_r_tw(i,of)) then
|
||||
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,of)+stt%rho_dip(s2,of))+&
|
||||
abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,of)+stt%rho_dip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
|
||||
(prm%L0_twin*prm%b_sl(i))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(dst%tau_r_twin(i,of)-tau)))
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*T)*&
|
||||
(dst%tau_r_tw(i,of)-tau)))
|
||||
else
|
||||
Ndot0=0.0_pReal
|
||||
end if
|
||||
|
@ -1242,7 +1237,7 @@ pure subroutine kinetics_twin(Mp,temperature,dot_gamma_sl,instance,of,&
|
|||
|
||||
significantStress: where(tau > tol_math_check)
|
||||
StressRatio_r = (dst%threshold_stress_twin(:,of)/tau)**prm%r
|
||||
dot_gamma_twin = prm%shear_twin * dst%twinVolume(:,of) * Ndot0*exp(-StressRatio_r)
|
||||
dot_gamma_twin = prm%shear_twin * dst%f_tw(:,of) * Ndot0*exp(-StressRatio_r)
|
||||
dgamma_dtau = (dot_gamma_twin*prm%r/tau)*StressRatio_r
|
||||
else where significantStress
|
||||
dot_gamma_twin = 0.0_pReal
|
||||
|
@ -1259,8 +1254,8 @@ end subroutine kinetics_twin
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates shear rates on twin systems
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
|
||||
dot_gamma_trans,dgamma_dtau_trans)
|
||||
pure subroutine kinetics_trans(Mp,T,dot_gamma_sl,instance,of,&
|
||||
dot_gamma_tr,dgamma_dtau_trans)
|
||||
use prec, only: &
|
||||
tol_math_check, &
|
||||
dNeq0
|
||||
|
@ -1271,7 +1266,7 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
|
|||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp !< Mandel stress
|
||||
real(pReal), intent(in) :: &
|
||||
temperature !< temperature
|
||||
T !< temperature
|
||||
integer, intent(in) :: &
|
||||
instance, &
|
||||
of
|
||||
|
@ -1279,7 +1274,7 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
|
|||
dot_gamma_sl
|
||||
|
||||
real(pReal), dimension(param(instance)%sum_N_tr), intent(out) :: &
|
||||
dot_gamma_trans
|
||||
dot_gamma_tr
|
||||
real(pReal), dimension(param(instance)%sum_N_tr), optional, intent(out) :: &
|
||||
dgamma_dtau_trans
|
||||
|
||||
|
@ -1298,12 +1293,12 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
|
|||
isFCC: if (prm%fccTwinTransNucleation) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,i)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,i)
|
||||
if (tau(i) < dst%tau_r_trans(i,of)) then
|
||||
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(dot_gamma_sl(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
|
||||
if (tau(i) < dst%tau_r_tr(i,of)) then
|
||||
Ndot0=(abs(dot_gamma_sl(s1))*(stt%rho_mob(s2,of)+stt%rho_dip(s2,of))+&
|
||||
abs(dot_gamma_sl(s2))*(stt%rho_mob(s1,of)+stt%rho_dip(s1,of)))/& ! ToDo: MD: it would be more consistent to use shearrates from state
|
||||
(prm%L0_trans*prm%b_sl(i))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(dst%tau_r_trans(i,of)-tau)))
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*T)*&
|
||||
(dst%tau_r_tr(i,of)-tau)))
|
||||
else
|
||||
Ndot0=0.0_pReal
|
||||
end if
|
||||
|
@ -1314,10 +1309,10 @@ pure subroutine kinetics_trans(Mp,temperature,dot_gamma_sl,instance,of,&
|
|||
|
||||
significantStress: where(tau > tol_math_check)
|
||||
StressRatio_s = (dst%threshold_stress_trans(:,of)/tau)**prm%s
|
||||
dot_gamma_trans = dst%martensiteVolume(:,of) * Ndot0*exp(-StressRatio_s)
|
||||
dgamma_dtau = (dot_gamma_trans*prm%r/tau)*StressRatio_s
|
||||
dot_gamma_tr = dst%f_tr(:,of) * Ndot0*exp(-StressRatio_s)
|
||||
dgamma_dtau = (dot_gamma_tr*prm%r/tau)*StressRatio_s
|
||||
else where significantStress
|
||||
dot_gamma_trans = 0.0_pReal
|
||||
dot_gamma_tr = 0.0_pReal
|
||||
dgamma_dtau = 0.0_pReal
|
||||
end where significantStress
|
||||
|
||||
|
|
Loading…
Reference in New Issue