all parameters should be stored in the constitutive laws
no need to know the 'phase number' anymore
This commit is contained in:
parent
038508aa11
commit
97977f4940
|
@ -6,7 +6,7 @@
|
|||
module plastic_dislotwin
|
||||
use prec, only: &
|
||||
pReal, &
|
||||
pInt
|
||||
pIntS
|
||||
|
||||
implicit none
|
||||
private
|
||||
|
@ -18,14 +18,6 @@ module plastic_dislotwin
|
|||
real(pReal), parameter, private :: &
|
||||
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
|
||||
|
||||
! START: Do something here
|
||||
real(pReal), dimension(:,:), allocatable, private :: &
|
||||
tau_r_twin, & !< stress to bring partial close together for each twin system and instance
|
||||
tau_r_trans !< stress to bring partial close together for each trans system and instance
|
||||
real(pReal), dimension(:,:,:), allocatable, private :: &
|
||||
forestProjectionEdge !< matrix of forest projections of edge dislocations for each instance
|
||||
! END: Do something here
|
||||
|
||||
enum, bind(c)
|
||||
enumerator :: undefined_ID, &
|
||||
edge_density_ID, &
|
||||
|
@ -56,7 +48,11 @@ module plastic_dislotwin
|
|||
integer(kind(undefined_ID)), dimension(:), allocatable, private :: &
|
||||
outputID !< ID of each post result output
|
||||
|
||||
logical :: &
|
||||
isFCC !< twinning and transformation models are for fcc
|
||||
real(pReal) :: &
|
||||
mu, &
|
||||
nu, &
|
||||
CAtomicVolume, & !< atomic volume in Bugers vector unit
|
||||
D0, & !< prefactor for self-diffusion coefficient
|
||||
Qsd, & !< activation energy for dislocation climb
|
||||
|
@ -106,7 +102,7 @@ module plastic_dislotwin
|
|||
Ndot0_twin, & !< twin nucleation rate [1/m³s] for each twin system and instance
|
||||
Ndot0_trans, & !< trans nucleation rate [1/m³s] for each trans system and instance
|
||||
twinsize, & !< twin thickness [m] for each twin system and instance
|
||||
CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
||||
CLambdaSlip, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
||||
lamellarsizePerTransSystem, & !< martensite lamellar thickness [m] for each trans system and instance
|
||||
p, & !< p-exponent in glide velocity
|
||||
q, & !< q-exponent in glide velocity
|
||||
|
@ -123,13 +119,15 @@ module plastic_dislotwin
|
|||
interaction_TransTrans !< coefficients for trans-trans interaction for each interaction type and instance
|
||||
integer(pInt), dimension(:,:), allocatable, private :: &
|
||||
fcc_twinNucleationSlipPair
|
||||
real(pReal), dimension(:,:,:), allocatable :: &
|
||||
real(pReal), dimension(:,:), allocatable, private :: &
|
||||
forestProjectionEdge, &
|
||||
C66
|
||||
real(pReal), dimension(:,:,:), allocatable, private :: &
|
||||
Schmid_trans, &
|
||||
Schmid_slip, &
|
||||
Schmid_twin
|
||||
real(pReal), dimension(:,:,:), allocatable, private :: &
|
||||
Ctwin66, &
|
||||
Ctrans66
|
||||
Schmid_twin, &
|
||||
C66_twin, &
|
||||
C66_trans
|
||||
end type
|
||||
|
||||
type(tParameters), dimension(:), allocatable, private,target :: param !< containers of constitutive parameters (len Ninstance)
|
||||
|
@ -161,8 +159,7 @@ module plastic_dislotwin
|
|||
end type tDislotwinState
|
||||
|
||||
type, private :: tDislotwinMicrostructure
|
||||
|
||||
real(pReal), pointer, dimension(:,:) :: &
|
||||
real(pReal), allocatable, dimension(:,:) :: &
|
||||
invLambdaSlip, &
|
||||
invLambdaSlipTwin, &
|
||||
invLambdaTwin, &
|
||||
|
@ -176,13 +173,15 @@ module plastic_dislotwin
|
|||
threshold_stress_trans, &
|
||||
twinVolume, &
|
||||
martensiteVolume, &
|
||||
tau_r_twin, &
|
||||
tau_r_trans
|
||||
tau_r_twin, & !< stress to bring partial close together for each twin system and instance
|
||||
tau_r_trans !< stress to bring partial close together for each trans system and instance
|
||||
end type tDislotwinMicrostructure
|
||||
|
||||
type(tDislotwinState), allocatable, dimension(:), private :: &
|
||||
state, &
|
||||
dotState
|
||||
type(tDislotwinMicrostructure), allocatable, dimension(:), private :: &
|
||||
microstructure
|
||||
|
||||
public :: &
|
||||
plastic_dislotwin_init, &
|
||||
|
@ -277,7 +276,8 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
character(len=65536), dimension(0), parameter :: emptyString = [character(len=65536)::]
|
||||
|
||||
|
||||
type(tParameters),pointer :: prm
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinMicrostructure) :: mse
|
||||
|
||||
|
||||
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOTWIN_label//' init -+>>>'
|
||||
|
@ -303,11 +303,14 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
allocate(param(maxNinstance))
|
||||
allocate(state(maxNinstance))
|
||||
allocate(dotState(maxNinstance))
|
||||
allocate(microstructure(maxNinstance))
|
||||
|
||||
do p = 1_pInt, size(phase_plasticityInstance)
|
||||
if (phase_plasticity(p) /= PLASTICITY_DISLOTWIN_ID) cycle
|
||||
instance = phase_plasticityInstance(p)
|
||||
prm => param(instance)
|
||||
associate(prm => param(instance))
|
||||
|
||||
prm%isFCC = merge(.true., .false., lattice_structure(p) == LATTICE_FCC_ID)
|
||||
|
||||
prm%Nslip = config_phase(p)%getInts('nslip',defaultVal=emptyInt)
|
||||
if (size(prm%Nslip) > count(lattice_NslipSystem(:,p) > 0_pInt)) call IO_error(150_pInt,ext_msg='Nslip')
|
||||
|
@ -333,8 +336,8 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
|
||||
prm%CEdgeDipMinDistance = config_phase(p)%getFloat('cedgedipmindistance')
|
||||
|
||||
prm%CLambdaSlipPerSlipSystem = config_phase(p)%getFloats('clambdaslip')
|
||||
prm%CLambdaSlipPerSlipSystem= math_expand(prm%CLambdaSlipPerSlipSystem,prm%Nslip)
|
||||
prm%CLambdaSlip = config_phase(p)%getFloats('clambdaslip')
|
||||
prm%CLambdaSlip= math_expand(prm%CLambdaSlip,prm%Nslip)
|
||||
|
||||
prm%tau_peierls = config_phase(p)%getFloats('tau_peierls',defaultVal=[0.0_pReal])
|
||||
|
||||
|
@ -357,7 +360,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
prm%Cmfptwin = config_phase(p)%getFloat('cmfptwin', defaultVal=0.0_pReal) ! ToDo: How to handle that???
|
||||
|
||||
prm%interaction_TwinTwin = spread(config_phase(p)%getFloats('interaction_twintwin'),2,1)
|
||||
if (lattice_structure(p) /= LATTICE_fcc_ID) then
|
||||
if (.not. prm%isFCC) then
|
||||
prm%Ndot0_twin = config_phase(p)%getFloats('ndot0_twin')
|
||||
prm%Ndot0_twin = math_expand(prm%Ndot0_twin,prm%Ntwin)
|
||||
endif
|
||||
|
@ -474,7 +477,6 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
case ('twin_fraction')
|
||||
outputID = twin_fraction_ID
|
||||
outputSize = prm%totalNtwin
|
||||
|
||||
case ('shear_rate_twin','shearrate_twin')
|
||||
outputID = shear_rate_twin_ID
|
||||
outputSize = prm%totalNtwin
|
||||
|
@ -494,7 +496,6 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
case ('resolved_stress_shearband')
|
||||
outputID = resolved_stress_shearband_ID
|
||||
outputSize = 6_pInt
|
||||
|
||||
case ('shear_rate_shearband','shearrate_shearband')
|
||||
outputID = shear_rate_shearband_ID
|
||||
outputSize = 6_pInt
|
||||
|
@ -516,7 +517,6 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
plastic_dislotwin_sizePostResult(i,instance) = outputSize
|
||||
prm%outputID = [prm%outputID , outputID]
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
|
@ -576,16 +576,9 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
prm%qShearBand <= 0.0_pReal) &
|
||||
call IO_error(211_pInt,el=instance,ext_msg='qShearBand ('//PLASTICITY_DISLOTWIN_label//')')
|
||||
|
||||
enddo
|
||||
! ToDo: this works only for one instance!
|
||||
allocate(forestProjectionEdge(prm%totalNslip,prm%totalNslip,maxNinstance), source=0.0_pReal)
|
||||
|
||||
|
||||
initializeInstances: do p = 1_pInt, size(phase_plasticity)
|
||||
if (phase_plasticity(p) /= PLASTICITY_dislotwin_ID) cycle
|
||||
NofMyPhase=count(material_phase==p)
|
||||
instance = phase_plasticityInstance(p)
|
||||
prm => param(instance)
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! allocate state arrays
|
||||
|
||||
|
@ -630,10 +623,15 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
plasticState(p)%accumulatedSlip => &
|
||||
plasticState(p)%state (offset_slip+1:offset_slip+plasticState(p)%nslip,1:NofMyPhase)
|
||||
|
||||
prm%mu = lattice_mu(p)
|
||||
prm%nu = lattice_nu(p)
|
||||
prm%C66 = lattice_C66(1:6,1:6,p)
|
||||
|
||||
allocate(temp1(prm%totalNslip,prm%totalNslip), source =0.0_pReal)
|
||||
allocate(temp2(prm%totalNslip,prm%totalNtwin), source =0.0_pReal)
|
||||
allocate(temp3(prm%totalNslip,prm%totalNtrans),source =0.0_pReal)
|
||||
allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal)
|
||||
allocate(prm%forestProjectionEdge(prm%totalNslip,prm%totalNslip),source = 0.0_pReal)
|
||||
i = 0_pInt
|
||||
mySlipFamilies: do f = 1_pInt,size(prm%Nslip,1)
|
||||
index_myFamily = sum(prm%Nslip(1:f-1_pInt))
|
||||
|
@ -644,7 +642,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
do o = 1_pInt, size(prm%Nslip,1)
|
||||
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
||||
do k = 1_pInt,prm%Nslip(o) ! loop over (active) systems in other family (slip)
|
||||
forestProjectionEdge(index_myFamily+j,index_otherFamily+k,instance) = &
|
||||
prm%forestProjectionEdge(index_myFamily+j,index_otherFamily+k) = &
|
||||
abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,p))+j,p), &
|
||||
lattice_st(:,sum(lattice_NslipSystem(1:o-1,p))+k,p)))
|
||||
temp1(index_myFamily+j,index_otherFamily+k) = &
|
||||
|
@ -683,7 +681,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
|
||||
allocate(temp1(prm%totalNtwin,prm%totalNslip), source =0.0_pReal)
|
||||
allocate(temp2(prm%totalNtwin,prm%totalNtwin), source =0.0_pReal)
|
||||
allocate(prm%Ctwin66(6,6,prm%totalNtwin), source=0.0_pReal)
|
||||
allocate(prm%C66_twin(6,6,prm%totalNtwin), source=0.0_pReal)
|
||||
if (allocated(Ctwin3333)) deallocate(Ctwin3333)
|
||||
allocate(Ctwin3333(3,3,3,3,prm%totalNtwin), source=0.0_pReal)
|
||||
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
|
||||
|
@ -712,7 +710,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
lattice_Qtwin(o,s,index_otherFamily+j,p)
|
||||
enddo; enddo; enddo; enddo
|
||||
enddo; enddo; enddo; enddo
|
||||
prm%Ctwin66(1:6,1:6,index_myFamily+j) = &
|
||||
prm%C66_twin(1:6,1:6,index_myFamily+j) = &
|
||||
math_Mandel3333to66(Ctwin3333(1:3,1:3,1:3,1:3,index_myFamily+j))
|
||||
|
||||
!* Interaction matrices
|
||||
|
@ -744,7 +742,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
|
||||
allocate(temp1(prm%totalNtrans,prm%totalNslip), source =0.0_pReal)
|
||||
allocate(temp2(prm%totalNtrans,prm%totalNtrans), source =0.0_pReal)
|
||||
allocate(prm%Ctrans66(6,6,prm%totalNtrans) ,source=0.0_pReal)
|
||||
allocate(prm%C66_trans(6,6,prm%totalNtrans) ,source=0.0_pReal)
|
||||
if (allocated(Ctrans3333)) deallocate(Ctrans3333)
|
||||
allocate(Ctrans3333(3,3,3,3,prm%totalNtrans), source=0.0_pReal)
|
||||
allocate(prm%Schmid_trans(3,3,prm%totalNtrans),source = 0.0_pReal)
|
||||
|
@ -766,7 +764,7 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
lattice_Qtrans(o,s,index_otherFamily+j,p)
|
||||
enddo; enddo; enddo; enddo
|
||||
enddo; enddo; enddo; enddo
|
||||
prm%Ctrans66(1:6,1:6,index_myFamily+j) = &
|
||||
prm%C66_trans(1:6,1:6,index_myFamily+j) = &
|
||||
math_Mandel3333to66(Ctrans3333(1:3,1:3,1:3,1:3,index_myFamily+j))
|
||||
|
||||
!* Interaction matrices
|
||||
|
@ -861,8 +859,8 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
invLambdaSlip0 = spread(0.0_pReal,1,prm%totalNslip)
|
||||
forall (i = 1_pInt:prm%totalNslip) &
|
||||
invLambdaSlip0(i) = sqrt(dot_product(math_expand(prm%rho0,prm%Nslip)+ &
|
||||
math_expand(prm%rhoDip0,prm%Nslip),forestProjectionEdge(1:prm%totalNslip,i,instance)))/ &
|
||||
prm%CLambdaSlipPerSlipSystem(i)
|
||||
math_expand(prm%rhoDip0,prm%Nslip),prm%forestProjectionEdge(1:prm%totalNslip,i)))/ &
|
||||
prm%CLambdaSlip(i)
|
||||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(invLambdaSlip0,prm%Nslip),2, NofMyPhase)
|
||||
|
||||
|
@ -944,12 +942,10 @@ subroutine plastic_dislotwin_init(fileUnit)
|
|||
plasticState(p)%state0(startIndex:endIndex,:) = &
|
||||
spread(math_expand(MartensiteVolume0,prm%Ntrans),2, NofMyPhase)
|
||||
|
||||
enddo initializeInstances
|
||||
|
||||
! ToDo: this should be stored somewhere else. Works only for the whole instance!!
|
||||
! ToDo: prm%totalNtwin should be the maximum over all totalNtwins!
|
||||
allocate(tau_r_twin(prm%totalNtwin, maxNinstance), source=0.0_pReal)
|
||||
allocate(tau_r_trans(prm%totalNtrans, maxNinstance), source=0.0_pReal)
|
||||
allocate(microstructure(instance)%tau_r_twin(prm%totalNtwin,NofMyPhase), source=0.0_pReal)
|
||||
allocate(microstructure(instance)%tau_r_trans(prm%totalNtrans,NofMyPhase), source=0.0_pReal)
|
||||
end associate
|
||||
enddo
|
||||
|
||||
end subroutine plastic_dislotwin_init
|
||||
|
||||
|
@ -958,10 +954,9 @@ end subroutine plastic_dislotwin_init
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
||||
use material, only: &
|
||||
material_phase, &
|
||||
phase_plasticityInstance, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_C66
|
||||
phasememberAt
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(6,6) :: &
|
||||
|
@ -973,35 +968,28 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: stt
|
||||
|
||||
integer(pInt) :: instance,i, &
|
||||
ph, &
|
||||
integer(pInt) :: s, &
|
||||
of
|
||||
real(pReal) :: sumf, sumftr
|
||||
real(pReal) :: sumf_twin, sumf_trans
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
associate( prm => param(instance), stt =>state(instance))
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sumf_twin = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of))
|
||||
sumf_trans = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
|
||||
!* Homogenized elasticity matrix
|
||||
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
|
||||
do i=1_pInt,prm%totalNtwin
|
||||
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf_twin-sumf_trans)*prm%C66
|
||||
do s=1_pInt,prm%totalNtwin
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ stt%twinFraction(i,of)*prm%Ctwin66(1:6,1:6,i)
|
||||
+ stt%twinFraction(s,of)*prm%C66_twin(1:6,1:6,s)
|
||||
enddo
|
||||
do i=1_pInt,prm%totalNtrans
|
||||
do s=1_pInt,prm%totalNtrans
|
||||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||||
+ (stt%stressTransFraction(i,of) + stt%strainTransFraction(i,of))*&
|
||||
prm%Ctrans66(1:6,1:6,i)
|
||||
+(stt%stressTransFraction(i,of)+stt%strainTransFraction(s,of))*&
|
||||
prm%C66_trans(1:6,1:6,s)
|
||||
enddo
|
||||
end associate
|
||||
end function plastic_dislotwin_homogenizedC
|
||||
|
@ -1011,15 +999,11 @@ function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
||||
use math, only: &
|
||||
pi
|
||||
PI
|
||||
use material, only: &
|
||||
material_phase, &
|
||||
phase_plasticityInstance, &
|
||||
plasticState, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_mu, &
|
||||
lattice_nu
|
||||
phasememberAt
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: &
|
||||
|
@ -1030,12 +1014,10 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
temperature !< temperature at IP
|
||||
|
||||
integer(pInt) :: &
|
||||
instance, &
|
||||
s, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: &
|
||||
sumf,sfe,sumftr
|
||||
sumf_twin,sfe,sumf_trans
|
||||
real(pReal), dimension(:), allocatable :: &
|
||||
x0, &
|
||||
fOverStacksize, &
|
||||
|
@ -1043,52 +1025,53 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
type(tParameters) :: prm !< parameters of present instance
|
||||
type(tDislotwinState) :: stt !< state of present instance
|
||||
type(tDislotwinMicrostructure) :: mse
|
||||
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = material_phase(ipc,ip,el)
|
||||
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
sumf = sum(stt%twinFraction(1:prm%totalNtwin,of))
|
||||
sumftr = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
|
||||
sumf_twin = sum(stt%twinFraction(1:prm%totalNtwin,of))
|
||||
sumf_trans = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
|
||||
+ sum(stt%strainTransFraction(1:prm%totalNtrans,of))
|
||||
|
||||
sfe = prm%SFE_0K + prm%dSFE_dT * Temperature
|
||||
|
||||
!* rescaled volume fraction for topology
|
||||
fOverStacksize = stt%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize
|
||||
ftransOverLamellarSize = sumftr /prm%lamellarsizePerTransSystem
|
||||
fOverStacksize = stt%twinFraction(1_pInt:prm%totalNtwin,of)/prm%twinsize !ToDo: This is per system
|
||||
ftransOverLamellarSize = sumf_trans/prm%lamellarsizePerTransSystem !ToDo: But this not ...
|
||||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:prm%totalNslip) &
|
||||
stt%invLambdaSlip(s,of) = &
|
||||
sqrt(dot_product((stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of)),&
|
||||
forestProjectionEdge(1:prm%totalNslip,s,instance)))/prm%CLambdaSlipPerSlipSystem(s)
|
||||
prm%forestProjectionEdge(1:prm%totalNslip,s)))/prm%CLambdaSlip(s)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (prm%totalNtwin > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||||
stt%invLambdaSlipTwin(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf)
|
||||
matmul(prm%interaction_SlipTwin,fOverStacksize)/(1.0_pReal-sumf_twin)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
|
||||
!ToDo: needed? if (prm%totalNtwin > 0_pInt) &
|
||||
stt%invLambdaTwin(1_pInt:prm%totalNtwin,of) = &
|
||||
matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf)
|
||||
matmul(prm%interaction_TwinTwin,fOverStacksize)/(1.0_pReal-sumf_twin)
|
||||
|
||||
|
||||
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||||
if (prm%totalNtrans > 0_pInt .and. prm%totalNslip > 0_pInt) &
|
||||
stt%invLambdaSlipTrans(1_pInt:prm%totalNslip,of) = &
|
||||
matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
matmul(prm%interaction_SlipTrans,ftransOverLamellarSize)/(1.0_pReal-sumf_trans)
|
||||
|
||||
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
|
||||
!ToDo: needed? if (prm%totalNtrans > 0_pInt) &
|
||||
|
||||
stt%invLambdaTrans(1_pInt:prm%totalNtrans,of) = &
|
||||
matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumftr)
|
||||
matmul(prm%interaction_TransTrans,ftransOverLamellarSize)/(1.0_pReal-sumf_trans)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
|
@ -1110,33 +1093,29 @@ subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:prm%totalNslip) stt%threshold_stress_slip(s,of) = &
|
||||
lattice_mu(ph)*prm%burgers_slip(s)*&
|
||||
prm%mu*prm%burgers_slip(s)*&
|
||||
sqrt(dot_product(stt%rhoEdge(1_pInt:prm%totalNslip,of)+stt%rhoEdgeDip(1_pInt:prm%totalNslip,of),&
|
||||
prm%interaction_SlipSlip(s,1:prm%totalNslip)))
|
||||
|
||||
!* threshold stress for growing twin/martensite
|
||||
stt%threshold_stress_twin(:,of) = prm%Cthresholdtwin* &
|
||||
(sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*lattice_mu(ph)/ &
|
||||
(sfe/(3.0_pReal*prm%burgers_twin)+ 3.0_pReal*prm%burgers_twin*prm%mu/ &
|
||||
(prm%L0_twin*prm%burgers_slip)) ! slip burgers here correct?
|
||||
stt%threshold_stress_trans(:,of) = prm%Cthresholdtrans* &
|
||||
(sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*lattice_mu(ph)/&
|
||||
(sfe/(3.0_pReal*prm%burgers_trans) + 3.0_pReal*prm%burgers_trans*prm%mu/&
|
||||
(prm%L0_trans*prm%burgers_slip) + prm%transStackHeight*prm%deltaG/ (3.0_pReal*prm%burgers_trans) )
|
||||
|
||||
! final volume after growth
|
||||
stt%twinVolume(:,of) = (PI/4.0_pReal)*prm%twinsize*stt%mfp_twin(:,of)**2.0_pReal
|
||||
stt%martensiteVolume(:,of) = (PI/4.0_pReal)*prm%lamellarsizePerTransSystem*stt%mfp_trans(:,of)**2.0_pReal
|
||||
|
||||
|
||||
|
||||
!ToDo: MD: This does not work for non-isothermal simulations!!!!!
|
||||
!* equilibrium separation of partial dislocations (twin)
|
||||
x0 = lattice_mu(ph)*prm%burgers_twin**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
|
||||
tau_r_twin(:,instance)= lattice_mu(ph)*prm%burgers_twin/(2.0_pReal*PI)*&
|
||||
(1/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0)
|
||||
!* equilibrium separation of partial dislocations (trans)
|
||||
x0 = lattice_mu(ph)*prm%burgers_trans**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
|
||||
tau_r_trans(:,instance)= lattice_mu(ph)*prm%burgers_trans/(2.0_pReal*PI)*&
|
||||
(1/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0)
|
||||
x0 = prm%mu*prm%burgers_twin**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu)
|
||||
mse%tau_r_twin(:,of) = prm%mu*prm%burgers_twin/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_twin)+cos(pi/3.0_pReal)/x0)
|
||||
|
||||
!* equilibrium separation of partial dislocations (trans)
|
||||
x0 = prm%mu*prm%burgers_trans**2.0_pReal/(sfe*8.0_pReal*PI)*(2.0_pReal+prm%nu)/(1.0_pReal-prm%nu)
|
||||
mse%tau_r_trans(:,of) = prm%mu*prm%burgers_trans/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%xc_trans)+cos(pi/3.0_pReal)/x0)
|
||||
|
||||
end associate
|
||||
end subroutine plastic_dislotwin_microstructure
|
||||
|
@ -1160,12 +1139,8 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
math_mul33x3
|
||||
use material, only: &
|
||||
material_phase, &
|
||||
plasticState, &
|
||||
phase_plasticityInstance, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_structure, &
|
||||
LATTICE_fcc_ID
|
||||
phasememberAt
|
||||
|
||||
implicit none
|
||||
integer(pInt), intent(in) :: ipc,ip,el
|
||||
|
@ -1174,14 +1149,14 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
real(pReal), dimension(3,3), intent(out) :: Lp
|
||||
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99
|
||||
|
||||
integer(pInt) :: ph,of,j,k,l,m,n,s1,s2,instance
|
||||
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,&
|
||||
integer(pInt) :: of,j,k,l,m,n,s1,s2
|
||||
real(pReal) :: sumf_twin,sumf_trans,StressRatio_p,StressRatio_pminus1,&
|
||||
StressRatio_r,BoltzmannRatio,Ndot0_twin,stressRatio, &
|
||||
Ndot0_trans,StressRatio_s, &
|
||||
dgdot_dtau, &
|
||||
tau
|
||||
real(pReal), dimension(3,3,3,3) :: dLp_dS
|
||||
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%Nslip) :: &
|
||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||
gdot_slip
|
||||
real(pReal):: gdot_sb,gdot_twin,gdot_trans
|
||||
real(pReal), dimension(3,3) :: eigVectors, Schmid_shearBand
|
||||
|
@ -1213,14 +1188,13 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
type(tDislotwinState) :: ste !< state of present instance
|
||||
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = material_phase(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))),&
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
sumf = sum(stt%twinFraction(1:prm%totalNtwin,of))
|
||||
sumftr = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
|
||||
sumf_twin = sum(stt%twinFraction(1:prm%totalNtwin,of))
|
||||
sumf_trans = sum(stt%stressTransFraction(1:prm%totalNtrans,of)) &
|
||||
+ sum(stt%strainTransFraction(1:prm%totalNtrans,of))
|
||||
|
||||
Lp = 0.0_pReal
|
||||
|
@ -1255,8 +1229,8 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
enddo slipContribution
|
||||
|
||||
!ToDo: Why do this before shear banding?
|
||||
Lp = Lp * (1.0_pReal - sumf - sumftr)
|
||||
dLp_dS = dLp_dS * (1.0_pReal - sumf - sumftr)
|
||||
Lp = Lp * (1.0_pReal - sumf_twin - sumf_trans)
|
||||
dLp_dS = dLp_dS * (1.0_pReal - sumf_twin - sumf_trans)
|
||||
|
||||
shearBandingContribution: if(dNeq0(prm%sbVelocity)) then
|
||||
|
||||
|
@ -1292,15 +1266,15 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
significantTwinStress: if (tau > tol_math_check) then
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
|
||||
isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
isFCCtwin: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_twin(j,instance)) then
|
||||
if (tau < mse%tau_r_twin(j,of)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_twin(j,instance)-tau)))
|
||||
(mse%tau_r_twin(j,of)-tau)))
|
||||
else
|
||||
Ndot0_twin=0.0_pReal
|
||||
end if
|
||||
|
@ -1308,7 +1282,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
endif isFCCtwin
|
||||
|
||||
gdot_twin = (1.0_pReal-sumf-sumftr)* prm%shear_twin(j) * stt%twinVolume(j,of) &
|
||||
gdot_twin = (1.0_pReal-sumf_twin-sumf_trans)* prm%shear_twin(j) * stt%twinVolume(j,of) &
|
||||
* Ndot0_twin*exp(-StressRatio_r)
|
||||
dgdot_dtau = ((gdot_twin*prm%r(j))/tau)*StressRatio_r
|
||||
|
||||
|
@ -1327,14 +1301,14 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
significantTransStress: if (tau > tol_math_check) then
|
||||
StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
|
||||
isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
isFCCtrans: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_trans(j,instance)) then
|
||||
if (tau < mse%tau_r_trans(j,of)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_trans*prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(tau_r_trans(j,instance)-tau)))
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*(mse%tau_r_trans(j,of)-tau)))
|
||||
else
|
||||
Ndot0_trans=0.0_pReal
|
||||
end if
|
||||
|
@ -1342,7 +1316,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
|||
Ndot0_trans=prm%Ndot0_trans(j)
|
||||
endif isFCCtrans
|
||||
|
||||
gdot_trans = (1.0_pReal-sumf-sumftr)* stt%martensiteVolume(j,of) &
|
||||
gdot_trans = (1.0_pReal-sumf_twin-sumf_trans)* stt%martensiteVolume(j,of) &
|
||||
* Ndot0_trans*exp(-StressRatio_s)
|
||||
dgdot_dtau = ((gdot_trans*prm%s(j))/tau)*StressRatio_s
|
||||
Lp = Lp + gdot_trans*prm%Schmid_trans(1:3,1:3,j)
|
||||
|
@ -1376,11 +1350,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
material_phase, &
|
||||
phase_plasticityInstance, &
|
||||
plasticState, &
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_mu, &
|
||||
lattice_structure, &
|
||||
LATTICE_fcc_ID
|
||||
phasememberAt
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(6), intent(in):: &
|
||||
|
@ -1395,7 +1365,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
integer(pInt) :: instance,j,s1,s2, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: sumf,sumftr,StressRatio_p,BoltzmannRatio,&
|
||||
real(pReal) :: sumf_twin,sumf_trans,StressRatio_p,BoltzmannRatio,&
|
||||
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0_twin,stressRatio,&
|
||||
Ndot0_trans,StressRatio_s,EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, &
|
||||
DotRhoDipFormation,DotRhoMultiplication,DotRhoEdgeEdgeAnnihilation, &
|
||||
|
@ -1408,6 +1378,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
S !< Second-Piola Kirchhoff stress
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: stt, dst
|
||||
type(tDislotwinMicrostructure) :: mse
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
|
@ -1419,10 +1390,11 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
dst => dotstate(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
dst => dotstate(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of))
|
||||
sumftr = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sumf_twin = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of))
|
||||
sumf_trans = sum(stt%stressTransFraction(1_pInt:prm%totalNtrans,of)) + &
|
||||
sum(stt%strainTransFraction(1_pInt:prm%totalNtrans,of))
|
||||
|
||||
slipState: do j = 1_pInt, prm%totalNslip
|
||||
|
@ -1446,7 +1418,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
significantSlipStress2: if (dEq0(tau)) then
|
||||
DotRhoDipFormation = 0.0_pReal
|
||||
else significantSlipStress2
|
||||
EdgeDipDistance = (3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j))/&
|
||||
EdgeDipDistance = (3.0_pReal*prm%mu*prm%burgers_slip(j))/&
|
||||
(16.0_pReal*PI*abs(tau))
|
||||
if (EdgeDipDistance>stt%mfp_slip(j,of)) EdgeDipDistance=stt%mfp_slip(j,of)
|
||||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||||
|
@ -1471,7 +1443,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
if (dEq0(EdgeDipDistance-EdgeDipMinDistance)) then
|
||||
DotRhoEdgeDipClimb = 0.0_pReal
|
||||
else
|
||||
ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ &
|
||||
ClimbVelocity = 3.0_pReal*prm%mu*VacancyDiffusion*AtomicVolume/ &
|
||||
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
|
||||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*stt%rhoEdgeDip(j,of)/ &
|
||||
(EdgeDipDistance-EdgeDipMinDistance)
|
||||
|
@ -1488,21 +1460,21 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
significantTwinStress: if (tau > tol_math_check) then
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau)**prm%r(j)
|
||||
isFCCtwin: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
isFCCtwin: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_twin(j,instance)) then
|
||||
if (tau < mse%tau_r_twin(j,of)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_twin(j,instance)-tau)))
|
||||
(mse%tau_r_twin(j,of)-tau)))
|
||||
else
|
||||
Ndot0_twin=0.0_pReal
|
||||
end if
|
||||
else isFCCtwin
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
endif isFCCtwin
|
||||
dst%twinFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
|
||||
dst%twinFraction(j,of) = (1.0_pReal-sumf_twin-sumf_trans)*&
|
||||
stt%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
dst%accshear_twin(j,of) = dst%twinFraction(j,of) * prm%shear_twin(j)
|
||||
endif significantTwinStress
|
||||
|
@ -1515,21 +1487,21 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
significantTransStress: if (tau > tol_math_check) then
|
||||
StressRatio_s = (stt%threshold_stress_trans(j,of)/tau)**prm%s(j)
|
||||
isFCCtrans: if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||
isFCCtrans: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_trans(j,instance)) then
|
||||
if (tau < mse%tau_r_trans(j,of)) then
|
||||
Ndot0_trans=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_trans*prm%burgers_slip(j))*(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)*&
|
||||
(tau_r_trans(j,instance)-tau)))
|
||||
(mse%tau_r_trans(j,of)-tau)))
|
||||
else
|
||||
Ndot0_trans=0.0_pReal
|
||||
end if
|
||||
else isFCCtrans
|
||||
Ndot0_trans=prm%Ndot0_trans(j)
|
||||
endif isFCCtrans
|
||||
dst%strainTransFraction(j,of) = (1.0_pReal-sumf-sumftr)*&
|
||||
dst%strainTransFraction(j,of) = (1.0_pReal-sumf_twin-sumf_trans)*&
|
||||
stt%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||||
!* Dotstate for accumulated shear due to transformation
|
||||
!dst%accshear_trans(j,of) = dst%strainTransFraction(j,of) * &
|
||||
|
@ -1558,11 +1530,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
material_phase, &
|
||||
plasticState, &
|
||||
phase_plasticityInstance,&
|
||||
phaseAt, phasememberAt
|
||||
use lattice, only: &
|
||||
lattice_mu, &
|
||||
lattice_structure, &
|
||||
LATTICE_fcc_ID
|
||||
phasememberAt
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
|
@ -1577,32 +1545,30 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
|
||||
postResults
|
||||
integer(pInt) :: &
|
||||
instance,&
|
||||
o,c,j,&
|
||||
s1,s2, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: sumf,tau,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0_twin,dgdot_dtauslip, &
|
||||
real(pReal) :: sumf_twin,tau,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0_twin,dgdot_dtauslip, &
|
||||
stressRatio
|
||||
real(preal), dimension(plasticState(material_phase(ipc,ip,el))%Nslip) :: &
|
||||
real(preal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||
gdot_slip
|
||||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
S !< Second-Piola Kirchhoff stress
|
||||
type(tParameters) :: prm
|
||||
type(tDislotwinState) :: stt
|
||||
type(tDislotwinMicrostructure) :: mse
|
||||
|
||||
!* Shortened notation
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
ph = phaseAt(ipc,ip,el)
|
||||
instance = phase_plasticityInstance(ph)
|
||||
|
||||
S = math_Mandel6to33(Tstar_v)
|
||||
|
||||
associate(prm => param(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
stt => state(phase_plasticityInstance(material_phase(ipc,ip,el))), &
|
||||
mse => microstructure(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||
|
||||
sumf = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
sumf_twin = sum(stt%twinFraction(1_pInt:prm%totalNtwin,of)) ! safe for prm%totalNtwin == 0
|
||||
|
||||
c = 0_pInt
|
||||
postResults = 0.0_pReal
|
||||
|
@ -1651,7 +1617,7 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
c = c + prm%totalNslip
|
||||
case (edge_dipole_distance_ID)
|
||||
do j = 1_pInt, prm%totalNslip
|
||||
postResults(c+j) = (3.0_pReal*lattice_mu(ph)*prm%burgers_slip(j)) &
|
||||
postResults(c+j) = (3.0_pReal*prm%mu*prm%burgers_slip(j)) &
|
||||
/ (16.0_pReal*PI*abs(math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))))
|
||||
postResults(c+j)=min(postResults(c+j),stt%mfp_slip(j,of))
|
||||
! postResults(c+j)=max(postResults(c+j),&
|
||||
|
@ -1708,23 +1674,22 @@ function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el) result(pos
|
|||
tau = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||
|
||||
if ( tau > 0.0_pReal ) then
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
isFCCtwin: if (prm%isFCC) then
|
||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||
if (tau < tau_r_twin(j,instance)) then
|
||||
if (tau < mse%tau_r_twin(j,of)) then
|
||||
Ndot0_twin=(abs(gdot_slip(s1))*(stt%rhoEdge(s2,of)+stt%rhoEdgeDip(s2,of))+&
|
||||
abs(gdot_slip(s2))*(stt%rhoEdge(s1,of)+stt%rhoEdgeDip(s1,of)))/&
|
||||
(prm%L0_twin* prm%burgers_slip(j))*&
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)* (tau_r_twin(j,instance)-tau)))
|
||||
(1.0_pReal-exp(-prm%VcrossSlip/(kB*Temperature)* (mse%tau_r_twin(j,of)-tau)))
|
||||
else
|
||||
Ndot0_twin=0.0_pReal
|
||||
end if
|
||||
case default
|
||||
else isFCCtwin
|
||||
Ndot0_twin=prm%Ndot0_twin(j)
|
||||
end select
|
||||
endif isFCCtwin
|
||||
StressRatio_r = (stt%threshold_stress_twin(j,of)/tau) **prm%r(j)
|
||||
postResults(c+j) = (prm%MaxTwinFraction-sumf)*prm%shear_twin(j) &
|
||||
postResults(c+j) = (prm%MaxTwinFraction-sumf_twin)*prm%shear_twin(j) &
|
||||
* stt%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||
endif
|
||||
enddo
|
||||
|
|
Loading…
Reference in New Issue