similar to imageData but uses RGB triplet as color value instead of mapping a scalar.
Can only use columnar data and not 2D arrays, though.
This commit is contained in:
parent
ee65b269ad
commit
973f092fd9
|
@ -0,0 +1,118 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
import os,sys,string
|
||||
import numpy as np
|
||||
from optparse import OptionParser
|
||||
from PIL import Image, ImageDraw
|
||||
import damask
|
||||
|
||||
scriptID = string.replace('$Id$','\n','\\n')
|
||||
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
||||
Generate PNG image from data in given column vector containing RGB tuples.
|
||||
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-l','--label', dest='label', type='string',
|
||||
help='column containing RGB triplet)')
|
||||
parser.add_option('-d','--dimension', dest='dimension', type='int', nargs=2,
|
||||
help='data dimension (width height) [native]')
|
||||
parser.add_option('--fliplr', dest='flipLR', action='store_true',
|
||||
help='flip around vertical axis')
|
||||
parser.add_option('--flipud', dest='flipUD', action='store_true',
|
||||
help='flip around horizontal axis')
|
||||
parser.add_option('--crop', dest='crop', type='int', nargs=4, metavar='LEFT RIGHT TOP BOTTOM',
|
||||
help='pixels cropped on left, right, top, bottom')
|
||||
parser.add_option('--show', dest='show', action='store_true',
|
||||
help='show resulting image')
|
||||
parser.add_option('-N','--pixelsize', dest='pixelsize', type='int',
|
||||
help='pixel per data point')
|
||||
parser.add_option('-x','--pixelsizex', dest='pixelsizex', type='int',
|
||||
help='pixel per data point along x')
|
||||
parser.add_option('-y','--pixelsizey', dest='pixelsizey', type='int',
|
||||
help='pixel per data point along y')
|
||||
|
||||
parser.set_defaults(label = None,
|
||||
dimension = [],
|
||||
flipLR = False,
|
||||
flipUD = False,
|
||||
crop = [0,0,0,0],
|
||||
pixelsize = 1,
|
||||
pixelsizex = 1,
|
||||
pixelsizey = 1,
|
||||
show = False,
|
||||
)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
if options.dimension == []: parser.error('dimension of data array missing')
|
||||
if options.pixelsize > 1: (options.pixelsizex,options.pixelsizey) = [options.pixelsize]*2
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
if filenames == []:
|
||||
filenames = ['STDIN']
|
||||
|
||||
for name in filenames:
|
||||
if name == 'STDIN':
|
||||
file = {'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}
|
||||
file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||||
else:
|
||||
if not os.path.exists(name): continue
|
||||
file = {'name':name,
|
||||
'input':open(name),
|
||||
'output':open(os.path.splitext(name)[0]+ \
|
||||
('' if options.label == None else '_'+options.label)+ \
|
||||
'.png','w'),
|
||||
'croak':sys.stderr}
|
||||
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||
|
||||
table = damask.ASCIItable(file['input'],file['output'],
|
||||
buffered = False, # make unbuffered ASCII_table
|
||||
labels = options.label != None) # no labels when taking 2D dataset
|
||||
table.head_read() # read ASCII header info
|
||||
|
||||
# --------------- figure out column to process -----------------------------------------------------
|
||||
|
||||
columns = table.labels_index(["%i_%s"%(i,options.label) for i in [1,2,3]])
|
||||
|
||||
if np.any(np.array(columns) == -1):
|
||||
file['croak'].write('column %s not found...\n'%options.label)
|
||||
table.close(dismiss = True) # close ASCII table file handles and delete output file
|
||||
|
||||
continue
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
||||
table.data_readArray(columns)
|
||||
|
||||
# convert data to values between 0 and 1 and arrange according to given options
|
||||
if options.dimension != []: table.data = table.data.reshape(options.dimension[1],options.dimension[0],3)
|
||||
if options.flipLR: table.data = np.fliplr(table.data)
|
||||
if options.flipUD: table.data = np.flipud(table.data)
|
||||
|
||||
table.data = table.data.\
|
||||
repeat(options.pixelsizex,axis=1).\
|
||||
repeat(options.pixelsizey,axis=0)
|
||||
|
||||
table.data *= 1. if np.any(table.data > 1.0) else 255.0 # ensure 8 bit data range
|
||||
|
||||
(height,width,bands) = table.data.shape
|
||||
|
||||
im = Image.fromarray(table.data.astype('uint8'), 'RGB').\
|
||||
crop(( options.crop[0],
|
||||
options.crop[2],
|
||||
width -options.crop[1],
|
||||
height-options.crop[3]))
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
||||
im.save(file['output'],format = "PNG")
|
||||
if options.show: im.show()
|
||||
|
||||
table.close() # close ASCII table file handles
|
Loading…
Reference in New Issue