Merge branch 'integer-exponents' into 'development'
Using integer exponent See merge request damask/DAMASK!467
This commit is contained in:
commit
96e4cb591c
|
@ -697,9 +697,9 @@ subroutine formJacobian(da_local,x_local,Jac_pre,Jac,dummy,ierr)
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! applying boundary conditions
|
||||
diag = (C_volAvg(1,1,1,1)/delta(1)**2.0_pReal + &
|
||||
C_volAvg(2,2,2,2)/delta(2)**2.0_pReal + &
|
||||
C_volAvg(3,3,3,3)/delta(3)**2.0_pReal)*detJ
|
||||
diag = (C_volAvg(1,1,1,1)/delta(1)**2 + &
|
||||
C_volAvg(2,2,2,2)/delta(2)**2 + &
|
||||
C_volAvg(3,3,3,3)/delta(3)**2)*detJ
|
||||
call MatZeroRowsColumns(Jac,size(rows),rows,diag,PETSC_NULL_VEC,PETSC_NULL_VEC,ierr)
|
||||
CHKERRQ(ierr)
|
||||
call DMGetGlobalVector(da_local,coordinates,ierr); CHKERRQ(ierr)
|
||||
|
|
|
@ -578,20 +578,20 @@ real(pReal) function utilities_divergenceRMS()
|
|||
do k = 1, grid3; do j = 1, grid(2)
|
||||
do i = 2, grid1Red -1 ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
utilities_divergenceRMS = utilities_divergenceRMS &
|
||||
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
|
||||
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)& ! --> sum squared L_2 norm of vector
|
||||
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k), & ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2, i.e. do not take square root and square again
|
||||
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2) & ! --> sum squared L_2 norm of vector
|
||||
+sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),&
|
||||
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal))
|
||||
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2))
|
||||
enddo
|
||||
utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1)
|
||||
+ sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
|
||||
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
|
||||
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
|
||||
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
|
||||
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
|
||||
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2) &
|
||||
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
|
||||
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal) &
|
||||
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2) &
|
||||
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
|
||||
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal)
|
||||
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2)
|
||||
enddo; enddo
|
||||
if (grid(1) == 1) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
|
||||
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,ierr)
|
||||
|
@ -630,7 +630,7 @@ real(pReal) function utilities_curlRMS()
|
|||
-tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2))
|
||||
enddo
|
||||
utilities_curlRMS = utilities_curlRMS &
|
||||
+2.0_pReal*sum(curl_fourier%re**2.0_pReal+curl_fourier%im**2.0_pReal) ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
+2.0_pReal*sum(curl_fourier%re**2+curl_fourier%im**2) ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
||||
enddo
|
||||
do l = 1, 3
|
||||
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2) &
|
||||
|
@ -641,7 +641,7 @@ real(pReal) function utilities_curlRMS()
|
|||
-tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2))
|
||||
enddo
|
||||
utilities_curlRMS = utilities_curlRMS &
|
||||
+ sum(curl_fourier%re**2.0_pReal + curl_fourier%im**2.0_pReal) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
|
||||
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
|
||||
do l = 1, 3
|
||||
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
|
||||
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
|
||||
|
@ -651,7 +651,7 @@ real(pReal) function utilities_curlRMS()
|
|||
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2))
|
||||
enddo
|
||||
utilities_curlRMS = utilities_curlRMS &
|
||||
+ sum(curl_fourier%re**2.0_pReal + curl_fourier%im**2.0_pReal) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
|
||||
+ sum(curl_fourier%re**2 + curl_fourier%im**2) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
|
||||
enddo; enddo
|
||||
|
||||
call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,ierr)
|
||||
|
@ -836,13 +836,13 @@ subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,&
|
|||
dPdF_min = huge(1.0_pReal)
|
||||
dPdF_norm_min = huge(1.0_pReal)
|
||||
do i = 1, product(grid(1:2))*grid3
|
||||
if (dPdF_norm_max < sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)) then
|
||||
if (dPdF_norm_max < sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2)) then
|
||||
dPdF_max = homogenization_dPdF(1:3,1:3,1:3,1:3,i)
|
||||
dPdF_norm_max = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)
|
||||
dPdF_norm_max = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2)
|
||||
endif
|
||||
if (dPdF_norm_min > sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)) then
|
||||
if (dPdF_norm_min > sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2)) then
|
||||
dPdF_min = homogenization_dPdF(1:3,1:3,1:3,1:3,i)
|
||||
dPdF_norm_min = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2.0_pReal)
|
||||
dPdF_norm_min = sum(homogenization_dPdF(1:3,1:3,1:3,1:3,i)**2)
|
||||
endif
|
||||
enddo
|
||||
|
||||
|
|
|
@ -546,7 +546,7 @@ module function RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
|
|||
do k = 1,3; do l = 1,3
|
||||
nDef(i,j) = nDef(i,j) - nVect(k)*gDef(i,l)*math_LeviCivita(j,k,l) ! compute the interface mismatch tensor from the jump of deformation gradient
|
||||
end do; end do
|
||||
nDefNorm = nDefNorm + nDef(i,j)**2.0_pReal ! compute the norm of the mismatch tensor
|
||||
nDefNorm = nDefNorm + nDef(i,j)**2 ! compute the norm of the mismatch tensor
|
||||
end do; end do
|
||||
nDefNorm = max(nDefToler,sqrt(nDefNorm)) ! approximation to zero mismatch if mismatch is zero (singularity)
|
||||
nMis(abs(intFace(1)),iGrain) = nMis(abs(intFace(1)),iGrain) + nDefNorm ! total amount of mismatch experienced by the grain (at all six interfaces)
|
||||
|
|
|
@ -473,13 +473,13 @@ function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(character
|
|||
p = sum(HEX_NTWINSYSTEM(1:f-1))+s
|
||||
select case(HEX_SHEARTWIN(p)) ! from Christian & Mahajan 1995 p.29
|
||||
case (1) ! <-10.1>{10.2}
|
||||
characteristicShear(a) = (3.0_pReal-cOverA**2.0_pReal)/sqrt(3.0_pReal)/CoverA
|
||||
characteristicShear(a) = (3.0_pReal-cOverA**2)/sqrt(3.0_pReal)/CoverA
|
||||
case (2) ! <11.6>{-1-1.1}
|
||||
characteristicShear(a) = 1.0_pReal/cOverA
|
||||
case (3) ! <10.-2>{10.1}
|
||||
characteristicShear(a) = (4.0_pReal*cOverA**2.0_pReal-9.0_pReal)/sqrt(48.0_pReal)/cOverA
|
||||
characteristicShear(a) = (4.0_pReal*cOverA**2-9.0_pReal)/sqrt(48.0_pReal)/cOverA
|
||||
case (4) ! <11.-3>{11.2}
|
||||
characteristicShear(a) = 2.0_pReal*(cOverA**2.0_pReal-2.0_pReal)/3.0_pReal/cOverA
|
||||
characteristicShear(a) = 2.0_pReal*(cOverA**2-2.0_pReal)/3.0_pReal/cOverA
|
||||
end select
|
||||
case default
|
||||
call IO_error(137,ext_msg='lattice_characteristicShear_Twin: '//trim(lattice))
|
||||
|
@ -558,11 +558,11 @@ function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
|
|||
C_bar66(1,4) = (C_parent66(1,1) - C_parent66(1,2) - 2.0_pReal*C_parent66(4,4)) /(3.0_pReal*sqrt(2.0_pReal))
|
||||
|
||||
C_target_unrotated66 = 0.0_pReal
|
||||
C_target_unrotated66(1,1) = C_bar66(1,1) - C_bar66(1,4)**2.0_pReal/C_bar66(4,4)
|
||||
C_target_unrotated66(1,2) = C_bar66(1,2) + C_bar66(1,4)**2.0_pReal/C_bar66(4,4)
|
||||
C_target_unrotated66(1,1) = C_bar66(1,1) - C_bar66(1,4)**2/C_bar66(4,4)
|
||||
C_target_unrotated66(1,2) = C_bar66(1,2) + C_bar66(1,4)**2/C_bar66(4,4)
|
||||
C_target_unrotated66(1,3) = C_bar66(1,3)
|
||||
C_target_unrotated66(3,3) = C_bar66(3,3)
|
||||
C_target_unrotated66(4,4) = C_bar66(4,4) - C_bar66(1,4)**2.0_pReal/(0.5_pReal*(C_bar66(1,1) - C_bar66(1,2)))
|
||||
C_target_unrotated66(4,4) = C_bar66(4,4) - C_bar66(1,4)**2/(0.5_pReal*(C_bar66(1,1) - C_bar66(1,2)))
|
||||
C_target_unrotated66 = lattice_symmetrize_C66(C_target_unrotated66,'hP')
|
||||
elseif (lattice_target == 'cI') then
|
||||
if (a_bcc <= 0.0_pReal .or. a_fcc <= 0.0_pReal) &
|
||||
|
|
|
@ -924,7 +924,7 @@ real(pReal) function math_sampleGaussVar(mu, sigma, width)
|
|||
do
|
||||
call random_number(rnd)
|
||||
scatter = width_ * (2.0_pReal * rnd(1) - 1.0_pReal)
|
||||
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) exit ! test if scattered value is drawn
|
||||
if (rnd(2) <= exp(-0.5_pReal * scatter**2)) exit ! test if scattered value is drawn
|
||||
enddo
|
||||
|
||||
math_sampleGaussVar = scatter * sigma
|
||||
|
@ -1086,15 +1086,15 @@ function math_eigvalsh33(m)
|
|||
|
||||
I = math_invariantsSym33(m) ! invariants are coefficients in characteristic polynomial apart for the sign of c0 and c2 in http://arxiv.org/abs/physics/0610206
|
||||
|
||||
P = I(2)-I(1)**2.0_pReal/3.0_pReal ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
|
||||
P = I(2)-I(1)**2/3.0_pReal ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
|
||||
Q = product(I(1:2))/3.0_pReal &
|
||||
- 2.0_pReal/27.0_pReal*I(1)**3.0_pReal &
|
||||
- 2.0_pReal/27.0_pReal*I(1)**3 &
|
||||
- I(3) ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
|
||||
|
||||
if (all(abs([P,Q]) < TOL)) then
|
||||
math_eigvalsh33 = math_eigvalsh(m)
|
||||
else
|
||||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||||
rho=sqrt(-3.0_pReal*P**3)/9.0_pReal
|
||||
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||||
math_eigvalsh33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||||
[cos( phi /3.0_pReal), &
|
||||
|
|
|
@ -388,8 +388,7 @@ module function phase_K_phi(co,ce) result(K)
|
|||
real(pReal), dimension(3,3) :: K
|
||||
real(pReal), parameter :: l = 1.0_pReal
|
||||
|
||||
K = crystallite_push33ToRef(co,ce,param(material_phaseID(co,ce))%D) &
|
||||
* l**2.0_pReal
|
||||
K = crystallite_push33ToRef(co,ce,param(material_phaseID(co,ce))%D) * l**2
|
||||
|
||||
end function phase_K_phi
|
||||
|
||||
|
|
|
@ -129,7 +129,7 @@ module subroutine anisobrittle_dotState(S, ph,en)
|
|||
traction_t = math_tensordot(S,prm%cleavage_systems(1:3,1:3,2,i))
|
||||
traction_n = math_tensordot(S,prm%cleavage_systems(1:3,1:3,3,i))
|
||||
|
||||
traction_crit = prm%g_crit(i)*damage_phi(ph,en)**2.0_pReal
|
||||
traction_crit = prm%g_crit(i)*damage_phi(ph,en)**2
|
||||
|
||||
damageState(ph)%dotState(1,en) = damageState(ph)%dotState(1,en) &
|
||||
+ prm%dot_o / prm%s_crit(i) &
|
||||
|
@ -190,7 +190,7 @@ module subroutine damage_anisobrittle_LiAndItsTangent(Ld, dLd_dTstar, S, ph,en)
|
|||
dLd_dTstar = 0.0_pReal
|
||||
associate(prm => param(ph))
|
||||
do i = 1,prm%sum_N_cl
|
||||
traction_crit = prm%g_crit(i)*damage_phi(ph,en)**2.0_pReal
|
||||
traction_crit = prm%g_crit(i)*damage_phi(ph,en)**2
|
||||
|
||||
traction_d = math_tensordot(S,prm%cleavage_systems(1:3,1:3,1,i))
|
||||
if (abs(traction_d) > traction_crit + tol_math_check) then
|
||||
|
|
|
@ -166,7 +166,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
|||
prm%D = pl%get_asFloat('D')
|
||||
prm%D_0 = pl%get_asFloat('D_0')
|
||||
prm%Q_cl = pl%get_asFloat('Q_cl')
|
||||
prm%f_at = pl%get_asFloat('f_at') * prm%b_sl**3.0_pReal
|
||||
prm%f_at = pl%get_asFloat('f_at') * prm%b_sl**3
|
||||
|
||||
prm%dipoleformation = .not. pl%get_asBool('no_dipole_formation', defaultVal = .false.)
|
||||
|
||||
|
@ -498,7 +498,7 @@ pure subroutine kinetics(Mp,T,ph,en, &
|
|||
* StressRatio_pminus1 / prm%tau_Peierls
|
||||
dtk = -1.0_pReal * t_k / tau_pos
|
||||
|
||||
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2.0_pReal
|
||||
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2
|
||||
|
||||
ddot_gamma_dtau_pos = b_rho_half * dvel
|
||||
else where significantPositiveTau2
|
||||
|
@ -528,7 +528,7 @@ pure subroutine kinetics(Mp,T,ph,en, &
|
|||
* StressRatio_pminus1 / prm%tau_Peierls
|
||||
dtk = -1.0_pReal * t_k / tau_neg
|
||||
|
||||
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2.0_pReal
|
||||
dvel = -1.0_pReal * prm%h * (dtk + dtn) / (t_n + t_k)**2
|
||||
|
||||
ddot_gamma_dtau_neg = b_rho_half * dvel
|
||||
else where significantNegativeTau2
|
||||
|
|
|
@ -691,8 +691,8 @@ module subroutine dislotwin_dotState(Mp,T,ph,en)
|
|||
* (prm%Gamma_sf(1) + prm%Gamma_sf(2) * T) / (mu*prm%b_sl(i)), &
|
||||
1.0_pReal, &
|
||||
prm%ExtendedDislocations)
|
||||
v_cl = 2.0_pReal*prm%omega*b_d**2.0_pReal*exp(-prm%Q_cl/(K_B*T)) &
|
||||
* (exp(abs(sigma_cl)*prm%b_sl(i)**3.0_pReal/(K_B*T)) - 1.0_pReal)
|
||||
v_cl = 2.0_pReal*prm%omega*b_d**2*exp(-prm%Q_cl/(K_B*T)) &
|
||||
* (exp(abs(sigma_cl)*prm%b_sl(i)**3/(K_B*T)) - 1.0_pReal)
|
||||
|
||||
dot_rho_dip_climb(i) = 4.0_pReal*v_cl*stt%rho_dip(i,en) &
|
||||
/ (d_hat-prm%d_caron(i))
|
||||
|
@ -784,14 +784,14 @@ module subroutine dislotwin_dependentState(T,ph,en)
|
|||
+ 3.0_pReal*prm%b_tr*mu/(prm%L_tr*prm%b_tr) &
|
||||
+ prm%h*prm%delta_G/(3.0_pReal*prm%b_tr)
|
||||
|
||||
dst%V_tw(:,en) = (PI/4.0_pReal)*prm%t_tw*dst%Lambda_tw(:,en)**2.0_pReal
|
||||
dst%V_tr(:,en) = (PI/4.0_pReal)*prm%t_tr*dst%Lambda_tr(:,en)**2.0_pReal
|
||||
dst%V_tw(:,en) = (PI/4.0_pReal)*prm%t_tw*dst%Lambda_tw(:,en)**2
|
||||
dst%V_tr(:,en) = (PI/4.0_pReal)*prm%t_tr*dst%Lambda_tr(:,en)**2
|
||||
|
||||
|
||||
x0 = mu*prm%b_tw**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, this is the Burgers vector for slip
|
||||
x0 = mu*prm%b_tw**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, this is the Burgers vector for slip
|
||||
dst%tau_r_tw(:,en) = mu*prm%b_tw/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tw)+cos(pi/3.0_pReal)/x0)
|
||||
|
||||
x0 = mu*prm%b_tr**2.0_pReal/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, this is the Burgers vector for slip
|
||||
x0 = mu*prm%b_tr**2/(Gamma*8.0_pReal*PI)*(2.0_pReal+nu)/(1.0_pReal-nu) ! ToDo: In the paper, this is the Burgers vector for slip
|
||||
dst%tau_r_tr(:,en) = mu*prm%b_tr/(2.0_pReal*PI)*(1.0_pReal/(x0+prm%x_c_tr)+cos(pi/3.0_pReal)/x0)
|
||||
|
||||
end associate
|
||||
|
@ -917,7 +917,7 @@ pure subroutine kinetics_sl(Mp,T,ph,en, &
|
|||
/ prm%tau_0
|
||||
dV_run_inverse_dTau = -1.0_pReal * v_run_inverse/tau_eff
|
||||
dV_dTau = -1.0_pReal * (dV_wait_inverse_dTau+dV_run_inverse_dTau) &
|
||||
/ (v_wait_inverse+v_run_inverse)**2.0_pReal
|
||||
/ (v_wait_inverse+v_run_inverse)**2
|
||||
ddot_gamma_dtau = dV_dTau*stt%rho_mob(:,en)*prm%b_sl
|
||||
else where significantStress
|
||||
dot_gamma_sl = 0.0_pReal
|
||||
|
|
|
@ -620,7 +620,7 @@ module subroutine nonlocal_dependentState(ph, en, ip, el)
|
|||
* spread(( 1.0_pReal - prm%f_F &
|
||||
+ prm%f_F &
|
||||
* log(0.35_pReal * prm%b_sl * sqrt(max(stt%rho_forest(:,en),prm%rho_significant))) &
|
||||
/ log(0.35_pReal * prm%b_sl * 1e6_pReal))** 2.0_pReal,2,prm%sum_N_sl)
|
||||
/ log(0.35_pReal * prm%b_sl * 1e6_pReal))**2,2,prm%sum_N_sl)
|
||||
else
|
||||
myInteractionMatrix = prm%h_sl_sl
|
||||
end if
|
||||
|
@ -1304,10 +1304,10 @@ function rhoDotFlux(timestep,ph,en,ip,el)
|
|||
* math_inner(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
|
||||
where (compatibility(c,:,s,n,ip,el) > 0.0_pReal) &
|
||||
rhoDotFlux(:,t) = rhoDotFlux(1:ns,t) &
|
||||
+ lineLength/IPvolume(ip,el)*compatibility(c,:,s,n,ip,el)**2.0_pReal ! transferring to equally signed mobile dislocation type
|
||||
+ lineLength/IPvolume(ip,el)*compatibility(c,:,s,n,ip,el)**2 ! transferring to equally signed mobile dislocation type
|
||||
where (compatibility(c,:,s,n,ip,el) < 0.0_pReal) &
|
||||
rhoDotFlux(:,topp) = rhoDotFlux(:,topp) &
|
||||
+ lineLength/IPvolume(ip,el)*compatibility(c,:,s,n,ip,el)**2.0_pReal ! transferring to opposite signed mobile dislocation type
|
||||
+ lineLength/IPvolume(ip,el)*compatibility(c,:,s,n,ip,el)**2 ! transferring to opposite signed mobile dislocation type
|
||||
|
||||
end if
|
||||
end do
|
||||
|
@ -1336,7 +1336,7 @@ function rhoDotFlux(timestep,ph,en,ip,el)
|
|||
c = (t + 1) / 2
|
||||
if (v0(s,t) * math_inner(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from en to my neighbor == leaving flux for en (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
|
||||
if (v0(s,t) * neighbor_v0(s,t) >= 0.0_pReal) then ! no sign change in flux density
|
||||
transmissivity = sum(compatibility(c,:,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
|
||||
transmissivity = sum(compatibility(c,:,s,n,ip,el)**2) ! overall transmissivity from this slip system to my neighbor
|
||||
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
|
||||
transmissivity = 0.0_pReal
|
||||
end if
|
||||
|
@ -1663,7 +1663,7 @@ pure subroutine kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, tauThreshold, c, T,
|
|||
!* Peierls contribution
|
||||
tauEff = max(0.0_pReal, abs(tauNS(s)) - tauThreshold(s))
|
||||
lambda_P = prm%b_sl(s)
|
||||
activationVolume_P = prm%w *prm%b_sl(s)**3.0_pReal
|
||||
activationVolume_P = prm%w *prm%b_sl(s)**3
|
||||
criticalStress_P = prm%peierlsStress(s,c)
|
||||
activationEnergy_P = criticalStress_P * activationVolume_P
|
||||
tauRel_P = min(1.0_pReal, tauEff / criticalStress_P)
|
||||
|
@ -1678,7 +1678,7 @@ pure subroutine kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, tauThreshold, c, T,
|
|||
! Contribution from solid solution strengthening
|
||||
tauEff = abs(tau(s)) - tauThreshold(s)
|
||||
lambda_S = prm%b_sl(s) / sqrt(prm%c_sol)
|
||||
activationVolume_S = prm%f_sol * prm%b_sl(s)**3.0_pReal / sqrt(prm%c_sol)
|
||||
activationVolume_S = prm%f_sol * prm%b_sl(s)**3 / sqrt(prm%c_sol)
|
||||
criticalStress_S = prm%Q_sol / activationVolume_S
|
||||
tauRel_S = min(1.0_pReal, tauEff / criticalStress_S)
|
||||
tSolidSolution = 1.0_pReal / prm%nu_a &
|
||||
|
@ -1694,8 +1694,8 @@ pure subroutine kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, tauThreshold, c, T,
|
|||
|
||||
v(s) = sign(1.0_pReal,tau(s)) &
|
||||
/ (tPeierls / lambda_P + tSolidSolution / lambda_S + prm%B /(prm%b_sl(s) * tauEff))
|
||||
dv_dtau(s) = v(s)**2.0_pReal * (dtSolidSolution_dtau / lambda_S + prm%B / (prm%b_sl(s) * tauEff**2.0_pReal))
|
||||
dv_dtauNS(s) = v(s)**2.0_pReal * dtPeierls_dtau / lambda_P
|
||||
dv_dtau(s) = v(s)**2 * (dtSolidSolution_dtau / lambda_S + prm%B / (prm%b_sl(s) * tauEff**2))
|
||||
dv_dtauNS(s) = v(s)**2 * dtPeierls_dtau / lambda_P
|
||||
|
||||
end if
|
||||
end do
|
||||
|
|
|
@ -578,7 +578,7 @@ pure function om2eu(om) result(eu)
|
|||
real(pReal) :: zeta
|
||||
|
||||
if (dNeq(abs(om(3,3)),1.0_pReal,1.e-8_pReal)) then
|
||||
zeta = 1.0_pReal/sqrt(math_clip(1.0_pReal-om(3,3)**2.0_pReal,1e-64_pReal,1.0_pReal))
|
||||
zeta = 1.0_pReal/sqrt(math_clip(1.0_pReal-om(3,3)**2,1e-64_pReal,1.0_pReal))
|
||||
eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), &
|
||||
acos(math_clip(om(3,3),-1.0_pReal,1.0_pReal)), &
|
||||
atan2(om(1,3)*zeta, om(2,3)*zeta)]
|
||||
|
@ -1099,7 +1099,7 @@ pure function ho2ax(ho) result(ax)
|
|||
+0.000003953714684212874_pReal, -0.00000036555001439719544_pReal ]
|
||||
|
||||
! normalize h and store the magnitude
|
||||
hmag_squared = sum(ho**2.0_pReal)
|
||||
hmag_squared = sum(ho**2)
|
||||
if (dEq0(hmag_squared)) then
|
||||
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
||||
else
|
||||
|
|
Loading…
Reference in New Issue