Merge branch 'nonSchmid-fix' into 'development'
corrected sign definition of <111>{110} slip systems See merge request damask/DAMASK!816
This commit is contained in:
commit
96699f994f
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
||||||
Subproject commit 9623d3d50e11a086e456b7fddc25fae67266911d
|
Subproject commit ed4e161d4302852a31c59a1d1d9b11d49f1a5427
|
|
@ -26,7 +26,7 @@ h_sl-sl: [0.009, 0.72, 0.009, 0.05, 0.05, 0.06, 0.09]
|
||||||
w: [2.992e-09] # 11b
|
w: [2.992e-09] # 11b
|
||||||
|
|
||||||
# values in Cereceda et al. are high, using parameters from Gröger et al.
|
# values in Cereceda et al. are high, using parameters from Gröger et al.
|
||||||
a_nonSchmid: [0.0, 0.56, 0.75] # Tab. 2
|
a_nonSchmid_110: [0.0, 0.56, 0.75] # Tab. 2
|
||||||
|
|
||||||
# (almost) no annhilation, adjustment needed for simulations beyond the yield point
|
# (almost) no annhilation, adjustment needed for simulations beyond the yield point
|
||||||
i_sl: [1] # c, eq. (25)
|
i_sl: [1] # c, eq. (25)
|
||||||
|
|
|
@ -785,25 +785,25 @@ class Crystal():
|
||||||
_kinematics: Dict[BravaisLattice, Dict[CrystalKinematics, List[np.ndarray]]] = {
|
_kinematics: Dict[BravaisLattice, Dict[CrystalKinematics, List[np.ndarray]]] = {
|
||||||
'cF': {
|
'cF': {
|
||||||
'slip': [np.array([
|
'slip': [np.array([
|
||||||
[+0,+1,-1, +1,+1,+1],
|
[ 0,+1,-1, +1,+1,+1],
|
||||||
[-1,+0,+1, +1,+1,+1],
|
[-1, 0,+1, +1,+1,+1],
|
||||||
[+1,-1,+0, +1,+1,+1],
|
[+1,-1, 0, +1,+1,+1],
|
||||||
[+0,-1,-1, -1,-1,+1],
|
[ 0,-1,-1, -1,-1,+1],
|
||||||
[+1,+0,+1, -1,-1,+1],
|
[+1, 0,+1, -1,-1,+1],
|
||||||
[-1,+1,+0, -1,-1,+1],
|
[-1,+1, 0, -1,-1,+1],
|
||||||
[+0,-1,+1, +1,-1,-1],
|
[ 0,-1,+1, +1,-1,-1],
|
||||||
[-1,+0,-1, +1,-1,-1],
|
[-1, 0,-1, +1,-1,-1],
|
||||||
[+1,+1,+0, +1,-1,-1],
|
[+1,+1, 0, +1,-1,-1],
|
||||||
[+0,+1,+1, -1,+1,-1],
|
[ 0,+1,+1, -1,+1,-1],
|
||||||
[+1,+0,-1, -1,+1,-1],
|
[+1, 0,-1, -1,+1,-1],
|
||||||
[-1,-1,+0, -1,+1,-1]]),
|
[-1,-1, 0, -1,+1,-1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+1,+1,+0, +1,-1,+0],
|
[+1,+1, 0, +1,-1, 0],
|
||||||
[+1,-1,+0, +1,+1,+0],
|
[+1,-1, 0, +1,+1, 0],
|
||||||
[+1,+0,+1, +1,+0,-1],
|
[+1, 0,+1, +1, 0,-1],
|
||||||
[+1,+0,-1, +1,+0,+1],
|
[+1, 0,-1, +1, 0,+1],
|
||||||
[+0,+1,+1, +0,+1,-1],
|
[ 0,+1,+1, 0,+1,-1],
|
||||||
[+0,+1,-1, +0,+1,+1]])],
|
[ 0,+1,-1, 0,+1,+1]])],
|
||||||
'twin': [np.array([
|
'twin': [np.array([
|
||||||
[-2, 1, 1, 1, 1, 1],
|
[-2, 1, 1, 1, 1, 1],
|
||||||
[ 1,-2, 1, 1, 1, 1],
|
[ 1,-2, 1, 1, 1, 1],
|
||||||
|
@ -820,18 +820,18 @@ class Crystal():
|
||||||
},
|
},
|
||||||
'cI': {
|
'cI': {
|
||||||
'slip': [np.array([
|
'slip': [np.array([
|
||||||
[+1,-1,+1, +0,+1,+1],
|
[+1,-1,+1, 0,+1,+1],
|
||||||
[-1,-1,+1, +0,+1,+1],
|
[-1,-1,+1, 0,-1,-1],
|
||||||
[+1,+1,+1, +0,-1,+1],
|
[+1,+1,+1, 0,+1,-1],
|
||||||
[-1,+1,+1, +0,-1,+1],
|
[-1,+1,+1, 0,-1,+1],
|
||||||
[-1,+1,+1, +1,+0,+1],
|
[-1,+1,+1, -1, 0,-1],
|
||||||
[-1,-1,+1, +1,+0,+1],
|
[-1,-1,+1, +1, 0,+1],
|
||||||
[+1,+1,+1, -1,+0,+1],
|
[+1,+1,+1, -1, 0,+1],
|
||||||
[+1,-1,+1, -1,+0,+1],
|
[+1,-1,+1, +1, 0,-1],
|
||||||
[-1,+1,+1, +1,+1,+0],
|
[-1,+1,+1, +1,+1, 0],
|
||||||
[-1,+1,-1, +1,+1,+0],
|
[+1,-1,+1, -1,-1, 0],
|
||||||
[+1,+1,+1, -1,+1,+0],
|
[+1,+1,+1, +1,-1, 0],
|
||||||
[+1,+1,-1, -1,+1,+0]]),
|
[-1,-1,+1, -1,+1, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[-1,+1,+1, +2,+1,+1],
|
[-1,+1,+1, +2,+1,+1],
|
||||||
[+1,+1,+1, -2,+1,+1],
|
[+1,+1,+1, -2,+1,+1],
|
||||||
|
@ -886,33 +886,33 @@ class Crystal():
|
||||||
},
|
},
|
||||||
'hP': {
|
'hP': {
|
||||||
'slip': [np.array([
|
'slip': [np.array([
|
||||||
[+2,-1,-1,+0, +0,+0,+0,+1],
|
[+2,-1,-1, 0, 0, 0, 0,+1],
|
||||||
[-1,+2,-1,+0, +0,+0,+0,+1],
|
[-1,+2,-1, 0, 0, 0, 0,+1],
|
||||||
[-1,-1,+2,+0, +0,+0,+0,+1]]),
|
[-1,-1,+2, 0, 0, 0, 0,+1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+2,-1,-1,+0, +0,+1,-1,+0],
|
[+2,-1,-1, 0, 0,+1,-1, 0],
|
||||||
[-1,+2,-1,+0, -1,+0,+1,+0],
|
[-1,+2,-1, 0, -1, 0,+1, 0],
|
||||||
[-1,-1,+2,+0, +1,-1,+0,+0]]),
|
[-1,-1,+2, 0, +1,-1, 0, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[-1,+2,-1,+0, +1,+0,-1,+1],
|
[-1,+2,-1, 0, +1, 0,-1,+1],
|
||||||
[-2,+1,+1,+0, +0,+1,-1,+1],
|
[-2,+1,+1, 0, 0,+1,-1,+1],
|
||||||
[-1,-1,+2,+0, -1,+1,+0,+1],
|
[-1,-1,+2, 0, -1,+1, 0,+1],
|
||||||
[+1,-2,+1,+0, -1,+0,+1,+1],
|
[+1,-2,+1, 0, -1, 0,+1,+1],
|
||||||
[+2,-1,-1,+0, +0,-1,+1,+1],
|
[+2,-1,-1, 0, 0,-1,+1,+1],
|
||||||
[+1,+1,-2,+0, +1,-1,+0,+1]]),
|
[+1,+1,-2, 0, +1,-1, 0,+1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[-2,+1,+1,+3, +1,+0,-1,+1],
|
[-2,+1,+1,+3, +1, 0,-1,+1],
|
||||||
[-1,-1,+2,+3, +1,+0,-1,+1],
|
[-1,-1,+2,+3, +1, 0,-1,+1],
|
||||||
[-1,-1,+2,+3, +0,+1,-1,+1],
|
[-1,-1,+2,+3, 0,+1,-1,+1],
|
||||||
[+1,-2,+1,+3, +0,+1,-1,+1],
|
[+1,-2,+1,+3, 0,+1,-1,+1],
|
||||||
[+1,-2,+1,+3, -1,+1,+0,+1],
|
[+1,-2,+1,+3, -1,+1, 0,+1],
|
||||||
[+2,-1,-1,+3, -1,+1,+0,+1],
|
[+2,-1,-1,+3, -1,+1, 0,+1],
|
||||||
[+2,-1,-1,+3, -1,+0,+1,+1],
|
[+2,-1,-1,+3, -1, 0,+1,+1],
|
||||||
[+1,+1,-2,+3, -1,+0,+1,+1],
|
[+1,+1,-2,+3, -1, 0,+1,+1],
|
||||||
[+1,+1,-2,+3, +0,-1,+1,+1],
|
[+1,+1,-2,+3, 0,-1,+1,+1],
|
||||||
[-1,+2,-1,+3, +0,-1,+1,+1],
|
[-1,+2,-1,+3, 0,-1,+1,+1],
|
||||||
[-1,+2,-1,+3, +1,-1,+0,+1],
|
[-1,+2,-1,+3, +1,-1, 0,+1],
|
||||||
[-2,+1,+1,+3, +1,-1,+0,+1]]),
|
[-2,+1,+1,+3, +1,-1, 0,+1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[-1,-1,+2,+3, +1,+1,-2,+2],
|
[-1,-1,+2,+3, +1,+1,-2,+2],
|
||||||
[+1,-2,+1,+3, -1,+2,-1,+2],
|
[+1,-2,+1,+3, -1,+2,-1,+2],
|
||||||
|
@ -951,61 +951,61 @@ class Crystal():
|
||||||
},
|
},
|
||||||
'tI': {
|
'tI': {
|
||||||
'slip': [np.array([
|
'slip': [np.array([
|
||||||
[+0,+0,+1, +1,+0,+0],
|
[ 0, 0,+1, +1, 0, 0],
|
||||||
[+0,+0,+1, +0,+1,+0]]),
|
[ 0, 0,+1, 0,+1, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+0,+0,+1, +1,+1,+0],
|
[ 0, 0,+1, +1,+1, 0],
|
||||||
[+0,+0,+1, -1,+1,+0]]),
|
[ 0, 0,+1, -1,+1, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+0,+1,+0, +1,+0,+0],
|
[ 0,+1, 0, +1, 0, 0],
|
||||||
[+1,+0,+0, +0,+1,+0]]),
|
[+1, 0, 0, 0,+1, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+1,-1,+1, +1,+1,+0],
|
[+1,-1,+1, +1,+1, 0],
|
||||||
[+1,-1,-1, +1,+1,+0],
|
[+1,-1,-1, +1,+1, 0],
|
||||||
[-1,-1,-1, -1,+1,+0],
|
[-1,-1,-1, -1,+1, 0],
|
||||||
[-1,-1,+1, -1,+1,+0]]),
|
[-1,-1,+1, -1,+1, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+1,-1,+0, +1,+1,+0],
|
[+1,-1, 0, +1,+1, 0],
|
||||||
[+1,+1,+0, +1,-1,+0]]),
|
[+1,+1, 0, +1,-1, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+0,+1,+1, +1,+0,+0],
|
[ 0,+1,+1, +1, 0, 0],
|
||||||
[+0,-1,+1, +1,+0,+0],
|
[ 0,-1,+1, +1, 0, 0],
|
||||||
[-1,+0,+1, +0,+1,+0],
|
[-1, 0,+1, 0,+1, 0],
|
||||||
[+1,+0,+1, +0,+1,+0]]),
|
[+1, 0,+1, 0,+1, 0]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+0,+1,+0, +0,+0,+1],
|
[ 0,+1, 0, 0, 0,+1],
|
||||||
[+1,+0,+0, +0,+0,+1]]),
|
[+1, 0, 0, 0, 0,+1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+1,+1,+0, +0,+0,+1],
|
[+1,+1, 0, 0, 0,+1],
|
||||||
[-1,+1,+0, +0,+0,+1]]),
|
[-1,+1, 0, 0, 0,+1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+0,+1,-1, +0,+1,+1],
|
[ 0,+1,-1, 0,+1,+1],
|
||||||
[+0,-1,-1, +0,-1,+1],
|
[ 0,-1,-1, 0,-1,+1],
|
||||||
[-1,+0,-1, -1,+0,+1],
|
[-1, 0,-1, -1, 0,+1],
|
||||||
[+1,+0,-1, +1,+0,+1]]),
|
[+1, 0,-1, +1, 0,+1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+1,-1,+1, +0,+1,+1],
|
[+1,-1,+1, 0,+1,+1],
|
||||||
[+1,+1,-1, +0,+1,+1],
|
[+1,+1,-1, 0,+1,+1],
|
||||||
[+1,+1,+1, +0,+1,-1],
|
[+1,+1,+1, 0,+1,-1],
|
||||||
[-1,+1,+1, +0,+1,-1],
|
[-1,+1,+1, 0,+1,-1],
|
||||||
[+1,-1,-1, +1,+0,+1],
|
[+1,-1,-1, +1, 0,+1],
|
||||||
[-1,-1,+1, +1,+0,+1],
|
[-1,-1,+1, +1, 0,+1],
|
||||||
[+1,+1,+1, +1,+0,-1],
|
[+1,+1,+1, +1, 0,-1],
|
||||||
[+1,-1,+1, +1,+0,-1]]),
|
[+1,-1,+1, +1, 0,-1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+1,+0,+0, +0,+1,+1],
|
[+1, 0, 0, 0,+1,+1],
|
||||||
[+1,+0,+0, +0,+1,-1],
|
[+1, 0, 0, 0,+1,-1],
|
||||||
[+0,+1,+0, +1,+0,+1],
|
[ 0,+1, 0, +1, 0,+1],
|
||||||
[+0,+1,+0, +1,+0,-1]]),
|
[ 0,+1, 0, +1, 0,-1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[+0,+1,-1, +2,+1,+1],
|
[ 0,+1,-1, +2,+1,+1],
|
||||||
[+0,-1,-1, +2,-1,+1],
|
[ 0,-1,-1, +2,-1,+1],
|
||||||
[+1,+0,-1, +1,+2,+1],
|
[+1, 0,-1, +1,+2,+1],
|
||||||
[-1,+0,-1, -1,+2,+1],
|
[-1, 0,-1, -1,+2,+1],
|
||||||
[+0,+1,-1, -2,+1,+1],
|
[ 0,+1,-1, -2,+1,+1],
|
||||||
[+0,-1,-1, -2,-1,+1],
|
[ 0,-1,-1, -2,-1,+1],
|
||||||
[-1,+0,-1, -1,-2,+1],
|
[-1, 0,-1, -1,-2,+1],
|
||||||
[+1,+0,-1, +1,-2,+1]]),
|
[+1, 0,-1, +1,-2,+1]]),
|
||||||
np.array([
|
np.array([
|
||||||
[-1,+1,+1, +2,+1,+1],
|
[-1,+1,+1, +2,+1,+1],
|
||||||
[-1,-1,+1, +2,-1,+1],
|
[-1,-1,+1, +2,-1,+1],
|
||||||
|
|
|
@ -1,23 +1,23 @@
|
||||||
3x3:1_Schmid 3x3:2_Schmid 3x3:3_Schmid 3x3:4_Schmid 3x3:5_Schmid 3x3:6_Schmid 3x3:7_Schmid 3x3:8_Schmid 3x3:9_Schmid
|
3x3:1_Schmid 3x3:2_Schmid 3x3:3_Schmid 3x3:4_Schmid 3x3:5_Schmid 3x3:6_Schmid 3x3:7_Schmid 3x3:8_Schmid 3x3:9_Schmid
|
||||||
0.0 0.4082482904638631 0.408248290463863 0.0 -0.408248290463863 -0.40824829046386296 0.0 0.4082482904638631 0.408248290463863
|
0.0 0.4082482904638631 0.408248290463863 0.0 -0.408248290463863 -0.40824829046386296 0.0 0.4082482904638631 0.408248290463863
|
||||||
0.0 -0.408248290463863 -0.40824829046386296 0.0 -0.408248290463863 -0.40824829046386296 0.0 0.4082482904638631 0.408248290463863
|
0.0 0.408248290463863 0.40824829046386296 0.0 0.408248290463863 0.40824829046386296 0.0 -0.4082482904638631 -0.408248290463863
|
||||||
0.0 -0.408248290463863 0.408248290463863 0.0 -0.408248290463863 0.408248290463863 0.0 -0.408248290463863 0.408248290463863
|
0.0 0.408248290463863 -0.408248290463863 0.0 0.408248290463863 -0.408248290463863 0.0 0.408248290463863 -0.408248290463863
|
||||||
0.0 0.40824829046386285 -0.40824829046386285 0.0 -0.408248290463863 0.408248290463863 0.0 -0.408248290463863 0.408248290463863
|
0.0 0.40824829046386285 -0.40824829046386285 0.0 -0.408248290463863 0.408248290463863 0.0 -0.408248290463863 0.408248290463863
|
||||||
-0.40824829046386296 2.4997998108697434e-17 -0.40824829046386285 0.4082482904638631 -2.4997998108697446e-17 0.408248290463863 0.4082482904638631 -2.4997998108697446e-17 0.408248290463863
|
0.40824829046386296 -2.4997998108697434e-17 0.40824829046386285 -0.4082482904638631 2.4997998108697446e-17 -0.408248290463863 -0.4082482904638631 2.4997998108697446e-17 -0.408248290463863
|
||||||
-0.408248290463863 2.499799810869744e-17 -0.40824829046386296 -0.408248290463863 2.499799810869744e-17 -0.40824829046386296 0.4082482904638631 -2.4997998108697446e-17 0.408248290463863
|
-0.408248290463863 2.499799810869744e-17 -0.40824829046386296 -0.408248290463863 2.499799810869744e-17 -0.40824829046386296 0.4082482904638631 -2.4997998108697446e-17 0.408248290463863
|
||||||
-0.408248290463863 2.499799810869744e-17 0.408248290463863 -0.408248290463863 2.499799810869744e-17 0.408248290463863 -0.408248290463863 2.499799810869744e-17 0.408248290463863
|
-0.408248290463863 2.499799810869744e-17 0.408248290463863 -0.408248290463863 2.499799810869744e-17 0.408248290463863 -0.408248290463863 2.499799810869744e-17 0.408248290463863
|
||||||
-0.408248290463863 2.499799810869744e-17 0.408248290463863 0.40824829046386296 -2.4997998108697437e-17 -0.40824829046386296 -0.408248290463863 2.499799810869744e-17 0.408248290463863
|
0.408248290463863 -2.499799810869744e-17 -0.408248290463863 -0.40824829046386296 2.4997998108697437e-17 0.40824829046386296 0.408248290463863 -2.499799810869744e-17 -0.408248290463863
|
||||||
-0.40824829046386296 -0.40824829046386285 4.999599621739487e-17 0.4082482904638631 0.408248290463863 -4.999599621739489e-17 0.4082482904638631 0.408248290463863 -4.999599621739489e-17
|
-0.40824829046386296 -0.40824829046386285 4.999599621739487e-17 0.4082482904638631 0.408248290463863 -4.999599621739489e-17 0.4082482904638631 0.408248290463863 -4.999599621739489e-17
|
||||||
-0.4082482904638631 -0.408248290463863 4.999599621739489e-17 0.408248290463863 0.40824829046386296 -4.999599621739488e-17 -0.4082482904638631 -0.408248290463863 4.999599621739489e-17
|
-0.4082482904638631 -0.408248290463863 4.999599621739489e-17 0.408248290463863 0.40824829046386296 -4.999599621739488e-17 -0.4082482904638631 -0.408248290463863 4.999599621739489e-17
|
||||||
-0.408248290463863 0.408248290463863 0.0 -0.408248290463863 0.408248290463863 0.0 -0.408248290463863 0.408248290463863 0.0
|
0.408248290463863 -0.408248290463863 0.0 0.408248290463863 -0.408248290463863 0.0 0.408248290463863 -0.408248290463863 0.0
|
||||||
-0.40824829046386296 0.40824829046386296 0.0 -0.40824829046386296 0.40824829046386296 0.0 0.408248290463863 -0.408248290463863 0.0
|
0.40824829046386296 -0.40824829046386296 0.0 0.40824829046386296 -0.40824829046386296 0.0 -0.408248290463863 0.408248290463863 0.0
|
||||||
-0.4714045207910316 -0.23570226039551578 -0.23570226039551576 0.4714045207910318 0.23570226039551587 0.23570226039551584 0.4714045207910318 0.23570226039551587 0.23570226039551584
|
-0.4714045207910316 -0.23570226039551578 -0.23570226039551576 0.4714045207910318 0.23570226039551587 0.23570226039551584 0.4714045207910318 0.23570226039551587 0.23570226039551584
|
||||||
-0.4714045207910318 0.23570226039551595 0.2357022603955159 -0.4714045207910318 0.23570226039551595 0.2357022603955159 -0.4714045207910318 0.23570226039551595 0.2357022603955159
|
-0.4714045207910318 0.23570226039551595 0.23570226039551595 -0.4714045207910318 0.23570226039551595 0.23570226039551595 -0.4714045207910318 0.23570226039551595 0.23570226039551595
|
||||||
0.47140452079103173 -0.2357022603955159 0.23570226039551584 0.47140452079103173 -0.2357022603955159 0.23570226039551584 -0.4714045207910318 0.23570226039551595 -0.23570226039551587
|
0.47140452079103173 -0.2357022603955159 0.23570226039551587 0.47140452079103173 -0.2357022603955159 0.23570226039551587 -0.4714045207910318 0.23570226039551595 -0.2357022603955159
|
||||||
0.4714045207910318 0.23570226039551587 -0.23570226039551595 -0.47140452079103173 -0.23570226039551584 0.2357022603955159 0.4714045207910318 0.23570226039551587 -0.23570226039551595
|
0.4714045207910318 0.23570226039551587 -0.23570226039551595 -0.47140452079103173 -0.23570226039551584 0.2357022603955159 0.4714045207910318 0.23570226039551587 -0.23570226039551595
|
||||||
0.2357022603955159 0.4714045207910318 0.23570226039551584 -0.23570226039551587 -0.47140452079103173 -0.23570226039551578 0.2357022603955159 0.4714045207910318 0.23570226039551584
|
0.2357022603955159 0.4714045207910318 0.23570226039551584 -0.23570226039551587 -0.47140452079103173 -0.23570226039551578 0.2357022603955159 0.4714045207910318 0.23570226039551584
|
||||||
-0.23570226039551587 0.47140452079103173 0.23570226039551587 -0.23570226039551587 0.47140452079103173 0.23570226039551587 0.2357022603955159 -0.4714045207910318 -0.2357022603955159
|
-0.23570226039551587 0.47140452079103173 0.23570226039551584 -0.23570226039551587 0.47140452079103173 0.23570226039551584 0.2357022603955159 -0.4714045207910318 -0.23570226039551587
|
||||||
0.2357022603955159 -0.4714045207910318 0.23570226039551595 0.2357022603955159 -0.4714045207910318 0.23570226039551595 0.2357022603955159 -0.4714045207910318 0.23570226039551595
|
0.2357022603955159 -0.4714045207910318 0.2357022603955159 0.2357022603955159 -0.4714045207910318 0.2357022603955159 0.2357022603955159 -0.4714045207910318 0.2357022603955159
|
||||||
-0.2357022603955158 -0.4714045207910316 0.23570226039551584 0.2357022603955159 0.4714045207910318 -0.23570226039551595 0.2357022603955159 0.4714045207910318 -0.23570226039551595
|
-0.2357022603955158 -0.4714045207910316 0.23570226039551584 0.2357022603955159 0.4714045207910318 -0.23570226039551595 0.2357022603955159 0.4714045207910318 -0.23570226039551595
|
||||||
0.23570226039551587 0.23570226039551584 0.47140452079103173 0.23570226039551587 0.23570226039551584 0.47140452079103173 -0.2357022603955159 -0.23570226039551587 -0.4714045207910318
|
0.23570226039551587 0.23570226039551584 0.47140452079103173 0.23570226039551587 0.23570226039551584 0.47140452079103173 -0.2357022603955159 -0.23570226039551587 -0.4714045207910318
|
||||||
-0.2357022603955159 0.2357022603955159 0.4714045207910318 0.23570226039551587 -0.23570226039551587 -0.47140452079103173 -0.2357022603955159 0.2357022603955159 0.4714045207910318
|
-0.2357022603955159 0.2357022603955159 0.4714045207910318 0.23570226039551587 -0.23570226039551587 -0.47140452079103173 -0.2357022603955159 0.2357022603955159 0.4714045207910318
|
||||||
|
@ -36,7 +36,7 @@
|
||||||
-0.30860669992418377 0.1543033499620919 -0.46291004988627565 0.3086066999241839 -0.15430334996209197 0.4629100498862758 0.3086066999241839 -0.15430334996209197 0.4629100498862758
|
-0.30860669992418377 0.1543033499620919 -0.46291004988627565 0.3086066999241839 -0.15430334996209197 0.4629100498862758 0.3086066999241839 -0.15430334996209197 0.4629100498862758
|
||||||
0.3086066999241839 0.1543033499620919 -0.4629100498862758 0.3086066999241839 0.1543033499620919 -0.4629100498862758 0.3086066999241839 0.1543033499620919 -0.4629100498862758
|
0.3086066999241839 0.1543033499620919 -0.4629100498862758 0.3086066999241839 0.1543033499620919 -0.4629100498862758 0.3086066999241839 0.1543033499620919 -0.4629100498862758
|
||||||
0.3086066999241839 0.4629100498862758 0.15430334996209188 -0.3086066999241838 -0.4629100498862757 -0.15430334996209186 0.3086066999241839 0.4629100498862758 0.15430334996209188
|
0.3086066999241839 0.4629100498862758 0.15430334996209188 -0.3086066999241838 -0.4629100498862757 -0.15430334996209186 0.3086066999241839 0.4629100498862758 0.15430334996209188
|
||||||
-0.3086066999241838 0.4629100498862757 0.15430334996209188 -0.3086066999241838 0.4629100498862757 0.15430334996209188 0.3086066999241839 -0.4629100498862758 -0.1543033499620919
|
-0.3086066999241838 0.4629100498862757 0.1543033499620919 -0.3086066999241838 0.4629100498862757 0.1543033499620919 0.3086066999241839 -0.4629100498862758 -0.15430334996209194
|
||||||
0.3086066999241839 -0.4629100498862758 0.15430334996209194 0.3086066999241839 -0.4629100498862758 0.15430334996209194 0.3086066999241839 -0.4629100498862758 0.15430334996209194
|
0.3086066999241839 -0.4629100498862758 0.15430334996209194 0.3086066999241839 -0.4629100498862758 0.15430334996209194 0.3086066999241839 -0.4629100498862758 0.15430334996209194
|
||||||
-0.30860669992418377 -0.46291004988627565 0.15430334996209194 0.3086066999241839 0.4629100498862758 -0.154303349962092 0.3086066999241839 0.4629100498862758 -0.154303349962092
|
-0.30860669992418377 -0.46291004988627565 0.15430334996209194 0.3086066999241839 0.4629100498862758 -0.154303349962092 0.3086066999241839 0.4629100498862758 -0.154303349962092
|
||||||
-0.46291004988627565 -0.15430334996209186 -0.3086066999241837 0.4629100498862758 0.1543033499620919 0.3086066999241838 0.4629100498862758 0.1543033499620919 0.3086066999241838
|
-0.46291004988627565 -0.15430334996209186 -0.3086066999241837 0.4629100498862758 0.1543033499620919 0.3086066999241838 0.4629100498862758 0.1543033499620919 0.3086066999241838
|
||||||
|
@ -45,5 +45,5 @@
|
||||||
0.4629100498862758 0.1543033499620919 -0.3086066999241839 -0.4629100498862757 -0.15430334996209188 0.3086066999241838 0.4629100498862758 0.1543033499620919 -0.3086066999241839
|
0.4629100498862758 0.1543033499620919 -0.3086066999241839 -0.4629100498862757 -0.15430334996209188 0.3086066999241838 0.4629100498862758 0.1543033499620919 -0.3086066999241839
|
||||||
-0.46291004988627565 -0.3086066999241837 -0.1543033499620918 0.4629100498862758 0.3086066999241838 0.15430334996209188 0.4629100498862758 0.3086066999241838 0.15430334996209188
|
-0.46291004988627565 -0.3086066999241837 -0.1543033499620918 0.4629100498862758 0.3086066999241838 0.15430334996209188 0.4629100498862758 0.3086066999241838 0.15430334996209188
|
||||||
-0.4629100498862758 0.3086066999241839 0.15430334996209194 -0.4629100498862758 0.3086066999241839 0.15430334996209194 -0.4629100498862758 0.3086066999241839 0.15430334996209194
|
-0.4629100498862758 0.3086066999241839 0.15430334996209194 -0.4629100498862758 0.3086066999241839 0.15430334996209194 -0.4629100498862758 0.3086066999241839 0.15430334996209194
|
||||||
0.4629100498862757 -0.3086066999241838 0.1543033499620919 0.4629100498862757 -0.3086066999241838 0.1543033499620919 -0.4629100498862758 0.3086066999241839 -0.15430334996209194
|
0.4629100498862757 -0.3086066999241838 0.15430334996209188 0.4629100498862757 -0.3086066999241838 0.15430334996209188 -0.4629100498862758 0.3086066999241839 -0.1543033499620919
|
||||||
0.4629100498862758 0.3086066999241838 -0.154303349962092 -0.4629100498862757 -0.30860669992418377 0.15430334996209197 0.4629100498862758 0.3086066999241838 -0.154303349962092
|
0.4629100498862758 0.3086066999241838 -0.154303349962092 -0.4629100498862757 -0.30860669992418377 0.15430334996209197 0.4629100498862758 0.3086066999241838 -0.154303349962092
|
||||||
|
|
|
@ -319,9 +319,7 @@ class TestOrientation:
|
||||||
eu = o.related(model).as_Euler_angles(degrees=True)
|
eu = o.related(model).as_Euler_angles(degrees=True)
|
||||||
if update:
|
if update:
|
||||||
coords = np.array([(1,i+1) for i,x in enumerate(eu)])
|
coords = np.array([(1,i+1) for i,x in enumerate(eu)])
|
||||||
Table(eu,{'Eulers':(3,)})\
|
Table({'Eulers':(3,)},eu).set('pos',coords).save(reference)
|
||||||
.add('pos',coords)\
|
|
||||||
.save(reference)
|
|
||||||
assert np.allclose(eu,Table.load(reference).get('Eulers'))
|
assert np.allclose(eu,Table.load(reference).get('Eulers'))
|
||||||
|
|
||||||
def test_basis_real(self):
|
def test_basis_real(self):
|
||||||
|
@ -369,8 +367,7 @@ class TestOrientation:
|
||||||
reference = res_path/f'{lattice}_{mode}.txt'
|
reference = res_path/f'{lattice}_{mode}.txt'
|
||||||
P = O.Schmid(N_slip='*') if mode == 'slip' else O.Schmid(N_twin='*')
|
P = O.Schmid(N_slip='*') if mode == 'slip' else O.Schmid(N_twin='*')
|
||||||
if update:
|
if update:
|
||||||
table = Table(P.reshape(-1,9),{'Schmid':(3,3,)})
|
Table({'Schmid':(3,3,)},P.reshape(-1,9)).save(reference)
|
||||||
table.save(reference)
|
|
||||||
assert np.allclose(P,Table.load(reference).get('Schmid'))
|
assert np.allclose(P,Table.load(reference).get('Schmid'))
|
||||||
|
|
||||||
def test_Schmid_invalid(self):
|
def test_Schmid_invalid(self):
|
||||||
|
|
|
@ -123,18 +123,21 @@ module crystal
|
||||||
real(pREAL), dimension(3+3,CI_NSLIP), parameter :: &
|
real(pREAL), dimension(3+3,CI_NSLIP), parameter :: &
|
||||||
CI_SYSTEMSLIP = reshape(real([&
|
CI_SYSTEMSLIP = reshape(real([&
|
||||||
! <111>{110} systems
|
! <111>{110} systems
|
||||||
|
! Sign convention follows Table 1 of 10.1016/j.ijplas.2020.102733
|
||||||
|
! to allow for universal calculation of non-glide plane normal n1 = Rot(-m,60°) @ n
|
||||||
|
! The choice matters since Rot(-m,60°) @ n ≠ Rot(m,60°) @ -n ..!
|
||||||
1,-1, 1, 0, 1, 1, &
|
1,-1, 1, 0, 1, 1, &
|
||||||
-1,-1, 1, 0, 1, 1, &
|
-1,-1, 1, 0,-1,-1, &
|
||||||
1, 1, 1, 0,-1, 1, &
|
1, 1, 1, 0, 1,-1, &
|
||||||
-1, 1, 1, 0,-1, 1, &
|
-1, 1, 1, 0,-1, 1, &
|
||||||
-1, 1, 1, 1, 0, 1, &
|
-1, 1, 1, -1, 0,-1, &
|
||||||
-1,-1, 1, 1, 0, 1, &
|
-1,-1, 1, 1, 0, 1, &
|
||||||
1, 1, 1, -1, 0, 1, &
|
1, 1, 1, -1, 0, 1, &
|
||||||
1,-1, 1, -1, 0, 1, &
|
1,-1, 1, 1, 0,-1, &
|
||||||
-1, 1, 1, 1, 1, 0, &
|
-1, 1, 1, 1, 1, 0, &
|
||||||
-1, 1,-1, 1, 1, 0, &
|
1,-1, 1, -1,-1, 0, &
|
||||||
1, 1, 1, -1, 1, 0, &
|
1, 1, 1, 1,-1, 0, &
|
||||||
1, 1,-1, -1, 1, 0, &
|
-1,-1, 1, -1, 1, 0, &
|
||||||
! <111>{112} systems
|
! <111>{112} systems
|
||||||
-1, 1, 1, 2, 1, 1, &
|
-1, 1, 1, 2, 1, 1, &
|
||||||
1, 1, 1, -2, 1, 1, &
|
1, 1, 1, -2, 1, 1, &
|
||||||
|
@ -1445,10 +1448,10 @@ end function crystal_SchmidMatrix_slip
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
function crystal_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
|
function crystal_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
|
||||||
|
|
||||||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||||
real(pREAL), intent(in) :: cOverA !< c/a ratio
|
real(pREAL), intent(in) :: cOverA !< c/a ratio
|
||||||
real(pREAL), dimension(3,3,sum(Ntwin)) :: SchmidMatrix
|
real(pREAL), dimension(3,3,sum(Ntwin)) :: SchmidMatrix
|
||||||
|
|
||||||
real(pREAL), dimension(3,3,sum(Ntwin)) :: coordinateSystem
|
real(pREAL), dimension(3,3,sum(Ntwin)) :: coordinateSystem
|
||||||
real(pREAL), dimension(:,:), allocatable :: twinSystems
|
real(pREAL), dimension(:,:), allocatable :: twinSystems
|
||||||
|
@ -1521,10 +1524,10 @@ end function crystal_SchmidMatrix_trans
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
function crystal_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMatrix)
|
function crystal_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMatrix)
|
||||||
|
|
||||||
integer, dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family
|
integer, dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family
|
||||||
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
character(len=*), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||||||
real(pREAL), intent(in) :: cOverA !< c/a ratio
|
real(pREAL), intent(in) :: cOverA !< c/a ratio
|
||||||
real(pREAL), dimension(3,3,3,sum(Ncleavage)) :: SchmidMatrix
|
real(pREAL), dimension(3,3,3,sum(Ncleavage)) :: SchmidMatrix
|
||||||
|
|
||||||
real(pREAL), dimension(3,3,sum(Ncleavage)) :: coordinateSystem
|
real(pREAL), dimension(3,3,sum(Ncleavage)) :: coordinateSystem
|
||||||
real(pREAL), dimension(:,:), allocatable :: cleavageSystems
|
real(pREAL), dimension(:,:), allocatable :: cleavageSystems
|
||||||
|
@ -1904,7 +1907,7 @@ end function buildInteraction
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
function buildCoordinateSystem(active,potential,system,lattice,cOverA) result(coordinateSystem)
|
function buildCoordinateSystem(active,potential,system,lattice,cOverA) result(coordinateSystem)
|
||||||
|
|
||||||
integer, dimension(:), intent(in) :: &
|
integer, dimension(:), intent(in) :: &
|
||||||
active, & !< # of active systems per family
|
active, & !< # of active systems per family
|
||||||
potential !< # of potential systems per family
|
potential !< # of potential systems per family
|
||||||
real(pREAL), dimension(:,:), intent(in) :: &
|
real(pREAL), dimension(:,:), intent(in) :: &
|
||||||
|
|
|
@ -674,6 +674,7 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
|
||||||
logical :: errmatinv
|
logical :: errmatinv
|
||||||
character(len=pSTRLEN):: formatString
|
character(len=pSTRLEN):: formatString
|
||||||
|
|
||||||
|
|
||||||
mask_stressVector = .not. reshape(transpose(mask_stress), [9])
|
mask_stressVector = .not. reshape(transpose(mask_stress), [9])
|
||||||
size_reduced = count(mask_stressVector)
|
size_reduced = count(mask_stressVector)
|
||||||
if (size_reduced > 0) then
|
if (size_reduced > 0) then
|
||||||
|
@ -696,6 +697,7 @@ function utilities_maskedCompliance(rot_BC,mask_stress,C)
|
||||||
write(formatString, '(i2)') size_reduced
|
write(formatString, '(i2)') size_reduced
|
||||||
formatString = '(/,1x,a,/,'//trim(formatString)//'('//trim(formatString)//'(2x,es9.2,1x)/))'
|
formatString = '(/,1x,a,/,'//trim(formatString)//'('//trim(formatString)//'(2x,es9.2,1x)/))'
|
||||||
print trim(formatString), 'C * S (load) ', transpose(matmul(c_reduced,s_reduced))
|
print trim(formatString), 'C * S (load) ', transpose(matmul(c_reduced,s_reduced))
|
||||||
|
print trim(formatString), 'C (load) ', transpose(c_reduced)
|
||||||
print trim(formatString), 'S (load) ', transpose(s_reduced)
|
print trim(formatString), 'S (load) ', transpose(s_reduced)
|
||||||
if (errmatinv) error stop 'matrix inversion error'
|
if (errmatinv) error stop 'matrix inversion error'
|
||||||
end if
|
end if
|
||||||
|
|
48
src/math.f90
48
src/math.f90
|
@ -24,6 +24,12 @@ module math
|
||||||
|
|
||||||
implicit none(type,external)
|
implicit none(type,external)
|
||||||
public
|
public
|
||||||
|
|
||||||
|
interface math_expand
|
||||||
|
module procedure math_expand_int
|
||||||
|
module procedure math_expand_real
|
||||||
|
end interface math_expand
|
||||||
|
|
||||||
#if __INTEL_COMPILER >= 1900
|
#if __INTEL_COMPILER >= 1900
|
||||||
! do not make use of associated entities available to other modules
|
! do not make use of associated entities available to other modules
|
||||||
private :: &
|
private :: &
|
||||||
|
@ -136,7 +142,7 @@ end subroutine math_init
|
||||||
pure recursive subroutine math_sort(a, istart, iend, sortDim)
|
pure recursive subroutine math_sort(a, istart, iend, sortDim)
|
||||||
|
|
||||||
integer, dimension(:,:), intent(inout) :: a
|
integer, dimension(:,:), intent(inout) :: a
|
||||||
integer, intent(in),optional :: istart,iend, sortDim
|
integer, optional, intent(in) :: istart,iend, sortDim
|
||||||
|
|
||||||
integer :: ipivot,s,e,d
|
integer :: ipivot,s,e,d
|
||||||
|
|
||||||
|
@ -199,11 +205,11 @@ end subroutine math_sort
|
||||||
!> @details takes a set of numbers (a,b,c,...) and corresponding multiples (x,y,z,...)
|
!> @details takes a set of numbers (a,b,c,...) and corresponding multiples (x,y,z,...)
|
||||||
!> to return a vector of x times a, y times b, z times c, ...
|
!> to return a vector of x times a, y times b, z times c, ...
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure function math_expand(what,how)
|
pure function math_expand_int(what,how)
|
||||||
|
|
||||||
real(pREAL), dimension(:), intent(in) :: what
|
integer, dimension(:), intent(in) :: what
|
||||||
integer, dimension(:), intent(in) :: how
|
integer, dimension(:), intent(in) :: how
|
||||||
real(pREAL), dimension(sum(how)) :: math_expand
|
integer, dimension(sum(how)) :: math_expand_int
|
||||||
|
|
||||||
integer :: i
|
integer :: i
|
||||||
|
|
||||||
|
@ -211,10 +217,33 @@ pure function math_expand(what,how)
|
||||||
if (sum(how) == 0) return
|
if (sum(how) == 0) return
|
||||||
|
|
||||||
do i = 1, size(how)
|
do i = 1, size(how)
|
||||||
math_expand(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1,size(what))+1)
|
math_expand_int(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1,size(what))+1)
|
||||||
end do
|
end do
|
||||||
|
|
||||||
end function math_expand
|
end function math_expand_int
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief vector expansion
|
||||||
|
!> @details takes a set of numbers (a,b,c,...) and corresponding multiples (x,y,z,...)
|
||||||
|
!> to return a vector of x times a, y times b, z times c, ...
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
pure function math_expand_real(what,how)
|
||||||
|
|
||||||
|
real(pREAL), dimension(:), intent(in) :: what
|
||||||
|
integer, dimension(:), intent(in) :: how
|
||||||
|
real(pREAL), dimension(sum(how)) :: math_expand_real
|
||||||
|
|
||||||
|
integer :: i
|
||||||
|
|
||||||
|
|
||||||
|
if (sum(how) == 0) return
|
||||||
|
|
||||||
|
do i = 1, size(how)
|
||||||
|
math_expand_real(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1,size(what))+1)
|
||||||
|
end do
|
||||||
|
|
||||||
|
end function math_expand_real
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
@ -1309,7 +1338,10 @@ subroutine math_selfTest()
|
||||||
|
|
||||||
if (any(abs([1.0_pREAL,2.0_pREAL,2.0_pREAL,1.0_pREAL,1.0_pREAL,1.0_pREAL] - &
|
if (any(abs([1.0_pREAL,2.0_pREAL,2.0_pREAL,1.0_pREAL,1.0_pREAL,1.0_pREAL] - &
|
||||||
math_expand([1.0_pREAL,2.0_pREAL],[1,2,3])) > tol_math_check)) &
|
math_expand([1.0_pREAL,2.0_pREAL],[1,2,3])) > tol_math_check)) &
|
||||||
error stop 'math_expand [1,2] by [1,2,3] => [1,2,2,1,1,1]'
|
error stop 'math_expand_real [1,2] by [1,2,3] => [1,2,2,1,1,1]'
|
||||||
|
|
||||||
|
if (any(abs([1,2,2,1,1,1] - math_expand([1,2],[1,2,3])) /= 0)) &
|
||||||
|
error stop 'math_expand_int [1,2] by [1,2,3] => [1,2,2,1,1,1]'
|
||||||
|
|
||||||
call math_sort(sort_in_,1,3,2)
|
call math_sort(sort_in_,1,3,2)
|
||||||
if (any(sort_in_ /= sort_out_)) &
|
if (any(sort_in_ /= sort_out_)) &
|
||||||
|
|
|
@ -153,7 +153,7 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
||||||
prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
||||||
|
|
||||||
if (phase_lattice(ph) == 'cI') then
|
if (phase_lattice(ph) == 'cI') then
|
||||||
a = pl%get_as1dReal('a_nonSchmid',defaultVal = emptyRealArray)
|
a = pl%get_as1dReal('a_nonSchmid_110',defaultVal = emptyRealArray)
|
||||||
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
|
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
|
||||||
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
|
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
|
||||||
else
|
else
|
||||||
|
|
|
@ -144,7 +144,7 @@ module function plastic_kinehardening_init() result(myPlasticity)
|
||||||
prm%P = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
prm%P = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
||||||
|
|
||||||
if (phase_lattice(ph) == 'cI') then
|
if (phase_lattice(ph) == 'cI') then
|
||||||
a = pl%get_as1dReal('a_nonSchmid',defaultVal=emptyRealArray)
|
a = pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray)
|
||||||
prm%nonSchmidActive = size(a) > 0
|
prm%nonSchmidActive = size(a) > 0
|
||||||
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
|
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
|
||||||
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
|
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
|
||||||
|
|
|
@ -253,7 +253,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
||||||
prm%P_sl = crystal_SchmidMatrix_slip(ini%N_sl,phase_lattice(ph), phase_cOverA(ph))
|
prm%P_sl = crystal_SchmidMatrix_slip(ini%N_sl,phase_lattice(ph), phase_cOverA(ph))
|
||||||
|
|
||||||
if (phase_lattice(ph) == 'cI') then
|
if (phase_lattice(ph) == 'cI') then
|
||||||
a = pl%get_as1dReal('a_nonSchmid',defaultVal = emptyRealArray)
|
a = pl%get_as1dReal('a_nonSchmid_110',defaultVal = emptyRealArray)
|
||||||
if (size(a) > 0) prm%nonSchmidActive = .true.
|
if (size(a) > 0) prm%nonSchmidActive = .true.
|
||||||
prm%P_nS_pos = crystal_nonSchmidMatrix(ini%N_sl,a,+1)
|
prm%P_nS_pos = crystal_nonSchmidMatrix(ini%N_sl,a,+1)
|
||||||
prm%P_nS_neg = crystal_nonSchmidMatrix(ini%N_sl,a,-1)
|
prm%P_nS_neg = crystal_nonSchmidMatrix(ini%N_sl,a,-1)
|
||||||
|
|
|
@ -160,7 +160,7 @@ module function plastic_phenopowerlaw_init() result(myPlasticity)
|
||||||
prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph))
|
||||||
|
|
||||||
if (phase_lattice(ph) == 'cI') then
|
if (phase_lattice(ph) == 'cI') then
|
||||||
a = pl%get_as1dReal('a_nonSchmid',defaultVal=emptyRealArray)
|
a = pl%get_as1dReal('a_nonSchmid_110',defaultVal=emptyRealArray)
|
||||||
if (size(a) > 0) prm%nonSchmidActive = .true.
|
if (size(a) > 0) prm%nonSchmidActive = .true.
|
||||||
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
|
prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1)
|
||||||
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
|
prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1)
|
||||||
|
|
Loading…
Reference in New Issue