general hybridIA functionality

This commit is contained in:
Martin Diehl 2020-09-28 07:40:43 +02:00
parent 7beed17a39
commit 95b85626d8
2 changed files with 31 additions and 0 deletions

View File

@ -20,6 +20,7 @@ __all__=[
'execute',
'show_progress',
'scale_to_coprime',
'hybrid_IA',
'return_message',
'extendableOption',
'execution_stamp'
@ -187,6 +188,23 @@ def execution_stamp(class_name,function_name=None):
return f'damask.{class_name}{_function_name} v{version} ({now})'
def hybrid_IA(dist,N,seed=None):
rng = np.random.default_rng(seed)
N_opt_samples = max(np.count_nonzero(dist),N) # random subsampling if too little samples requested
scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
repeats = np.rint(scale*dist).astype(int)
N_inv_samples = np.sum(repeats)
while (not np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
if N_inv_samples < N_opt_samples else \
(scale_,0.5*(scale_ + scale), 1.0)
repeats = np.rint(scale*dist).astype(int)
N_inv_samples = np.sum(repeats)
return np.repeat(np.arange(len(dist)),repeats)[rng.permutation(N_inv_samples)[:N]]
####################################################################################################
# Classes
####################################################################################################

View File

@ -1,5 +1,7 @@
import pytest
import numpy as np
from scipy import stats
from damask import util
@ -31,3 +33,14 @@ class TestUtil:
def test_lackofprecision(self):
with pytest.raises(ValueError):
util.scale_to_coprime(np.array([1/333.333,1,1]))
@pytest.mark.parametrize('rv',[stats.rayleigh(),stats.weibull_min(1.2),stats.halfnorm(),stats.pareto(2.62)])
def test_hybridIA(self,rv):
bins = np.linspace(0,10,100000)
centers = (bins[1:]+bins[:-1])/2
N_samples = bins.shape[0]-1000
dist = rv.pdf(centers)
selected = util.hybrid_IA(dist,N_samples)
dist_sampled = np.histogram(centers[selected],bins)[0]/N_samples*np.sum(dist)
assert np.sqrt(((dist - dist_sampled) ** 2).mean()) < .025 and selected.shape[0]==N_samples