Merge commit 'v3.0.0-alpha2-161-ga6c46fc2b'

This commit is contained in:
Test User 2021-01-06 23:13:08 +01:00
commit 953d71e6c8
3 changed files with 57 additions and 561 deletions

View File

@ -11,7 +11,6 @@
#include "config.f90"
#include "LAPACK_interface.f90"
#include "math.f90"
#include "quaternions.f90"
#include "rotations.f90"
#include "element.f90"
#include "HDF5_utilities.f90"

View File

@ -1,534 +0,0 @@
!---------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Michigan State University
!> @brief general quaternion math, not limited to unit quaternions
!> @details w is the real part, (x, y, z) are the imaginary parts.
!> @details https://en.wikipedia.org/wiki/Quaternion
!---------------------------------------------------------------------------------------------------
module quaternions
use prec
implicit none
private
real(pReal), parameter, public :: P = -1.0_pReal !< parameter for orientation conversion.
type, public :: quaternion
real(pReal), private :: w = 0.0_pReal
real(pReal), private :: x = 0.0_pReal
real(pReal), private :: y = 0.0_pReal
real(pReal), private :: z = 0.0_pReal
contains
procedure, private :: add__
procedure, private :: pos__
generic, public :: operator(+) => add__,pos__
procedure, private :: sub__
procedure, private :: neg__
generic, public :: operator(-) => sub__,neg__
procedure, private :: mul_quat__
procedure, private :: mul_scal__
generic, public :: operator(*) => mul_quat__, mul_scal__
procedure, private :: div_quat__
procedure, private :: div_scal__
generic, public :: operator(/) => div_quat__, div_scal__
procedure, private :: eq__
generic, public :: operator(==) => eq__
procedure, private :: neq__
generic, public :: operator(/=) => neq__
procedure, private :: pow_quat__
procedure, private :: pow_scal__
generic, public :: operator(**) => pow_quat__, pow_scal__
procedure, public :: abs => abs__
procedure, public :: conjg => conjg__
procedure, public :: real => real__
procedure, public :: aimag => aimag__
procedure, public :: homomorphed
procedure, public :: asArray
procedure, public :: inverse
end type
interface assignment (=)
module procedure assign_quat__
module procedure assign_vec__
end interface assignment (=)
interface quaternion
module procedure init__
end interface quaternion
interface abs
procedure abs__
end interface abs
interface dot_product
procedure dot_product__
end interface dot_product
interface conjg
module procedure conjg__
end interface conjg
interface exp
module procedure exp__
end interface exp
interface log
module procedure log__
end interface log
interface real
module procedure real__
end interface real
interface aimag
module procedure aimag__
end interface aimag
public :: &
quaternions_init, &
assignment(=), &
conjg, aimag, &
log, exp, &
abs, dot_product, &
inverse, &
real
contains
!--------------------------------------------------------------------------------------------------
!> @brief Do self test.
!--------------------------------------------------------------------------------------------------
subroutine quaternions_init
print'(/,a)', ' <<<+- quaternions init -+>>>'; flush(6)
call selfTest
end subroutine quaternions_init
!---------------------------------------------------------------------------------------------------
!> @brief construct a quaternion from a 4-vector
!---------------------------------------------------------------------------------------------------
type(quaternion) pure function init__(array)
real(pReal), intent(in), dimension(4) :: array
init__%w = array(1)
init__%x = array(2)
init__%y = array(3)
init__%z = array(4)
end function init__
!---------------------------------------------------------------------------------------------------
!> @brief assign a quaternion
!---------------------------------------------------------------------------------------------------
elemental pure subroutine assign_quat__(self,other)
type(quaternion), intent(out) :: self
type(quaternion), intent(in) :: other
self = [other%w,other%x,other%y,other%z]
end subroutine assign_quat__
!---------------------------------------------------------------------------------------------------
!> @brief assign a 4-vector
!---------------------------------------------------------------------------------------------------
pure subroutine assign_vec__(self,other)
type(quaternion), intent(out) :: self
real(pReal), intent(in), dimension(4) :: other
self%w = other(1)
self%x = other(2)
self%y = other(3)
self%z = other(4)
end subroutine assign_vec__
!---------------------------------------------------------------------------------------------------
!> @brief add a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function add__(self,other)
class(quaternion), intent(in) :: self,other
add__ = [ self%w, self%x, self%y ,self%z] &
+ [other%w, other%x, other%y,other%z]
end function add__
!---------------------------------------------------------------------------------------------------
!> @brief return (unary positive operator)
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function pos__(self)
class(quaternion), intent(in) :: self
pos__ = self * (+1.0_pReal)
end function pos__
!---------------------------------------------------------------------------------------------------
!> @brief subtract a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function sub__(self,other)
class(quaternion), intent(in) :: self,other
sub__ = [ self%w, self%x, self%y ,self%z] &
- [other%w, other%x, other%y,other%z]
end function sub__
!---------------------------------------------------------------------------------------------------
!> @brief negate (unary negative operator)
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function neg__(self)
class(quaternion), intent(in) :: self
neg__ = self * (-1.0_pReal)
end function neg__
!---------------------------------------------------------------------------------------------------
!> @brief multiply with a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function mul_quat__(self,other)
class(quaternion), intent(in) :: self, other
mul_quat__%w = self%w*other%w - self%x*other%x - self%y*other%y - self%z*other%z
mul_quat__%x = self%w*other%x + self%x*other%w + P * (self%y*other%z - self%z*other%y)
mul_quat__%y = self%w*other%y + self%y*other%w + P * (self%z*other%x - self%x*other%z)
mul_quat__%z = self%w*other%z + self%z*other%w + P * (self%x*other%y - self%y*other%x)
end function mul_quat__
!---------------------------------------------------------------------------------------------------
!> @brief multiply with a scalar
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function mul_scal__(self,scal)
class(quaternion), intent(in) :: self
real(pReal), intent(in) :: scal
mul_scal__ = [self%w,self%x,self%y,self%z]*scal
end function mul_scal__
!---------------------------------------------------------------------------------------------------
!> @brief divide by a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function div_quat__(self,other)
class(quaternion), intent(in) :: self, other
div_quat__ = self * (conjg(other)/(abs(other)**2.0_pReal))
end function div_quat__
!---------------------------------------------------------------------------------------------------
!> @brief divide by a scalar
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function div_scal__(self,scal)
class(quaternion), intent(in) :: self
real(pReal), intent(in) :: scal
div_scal__ = [self%w,self%x,self%y,self%z]/scal
end function div_scal__
!---------------------------------------------------------------------------------------------------
!> @brief test equality
!---------------------------------------------------------------------------------------------------
logical elemental pure function eq__(self,other)
class(quaternion), intent(in) :: self,other
eq__ = all(dEq([ self%w, self%x, self%y, self%z], &
[other%w,other%x,other%y,other%z]))
end function eq__
!---------------------------------------------------------------------------------------------------
!> @brief test inequality
!---------------------------------------------------------------------------------------------------
logical elemental pure function neq__(self,other)
class(quaternion), intent(in) :: self,other
neq__ = .not. self%eq__(other)
end function neq__
!---------------------------------------------------------------------------------------------------
!> @brief raise to the power of a quaternion
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function pow_quat__(self,expon)
class(quaternion), intent(in) :: self
type(quaternion), intent(in) :: expon
pow_quat__ = exp(log(self)*expon)
end function pow_quat__
!---------------------------------------------------------------------------------------------------
!> @brief raise to the power of a scalar
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function pow_scal__(self,expon)
class(quaternion), intent(in) :: self
real(pReal), intent(in) :: expon
pow_scal__ = exp(log(self)*expon)
end function pow_scal__
!---------------------------------------------------------------------------------------------------
!> @brief take exponential
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function exp__(a)
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(a))
exp__ = merge(exp(a%w) * [ cos(absImag), &
a%x/absImag * sin(absImag), &
a%y/absImag * sin(absImag), &
a%z/absImag * sin(absImag)], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
end function exp__
!---------------------------------------------------------------------------------------------------
!> @brief take logarithm
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function log__(a)
class(quaternion), intent(in) :: a
real(pReal) :: absImag
absImag = norm2(aimag(a))
log__ = merge([log(abs(a)), &
a%x/absImag * acos(a%w/abs(a)), &
a%y/absImag * acos(a%w/abs(a)), &
a%z/absImag * acos(a%w/abs(a))], &
IEEE_value(1.0_pReal,IEEE_SIGNALING_NAN), &
dNeq0(absImag))
end function log__
!---------------------------------------------------------------------------------------------------
!> @brief return norm
!---------------------------------------------------------------------------------------------------
real(pReal) elemental pure function abs__(self)
class(quaternion), intent(in) :: self
abs__ = norm2([self%w,self%x,self%y,self%z])
end function abs__
!---------------------------------------------------------------------------------------------------
!> @brief calculate dot product
!---------------------------------------------------------------------------------------------------
real(pReal) elemental pure function dot_product__(a,b)
class(quaternion), intent(in) :: a,b
dot_product__ = a%w*b%w + a%x*b%x + a%y*b%y + a%z*b%z
end function dot_product__
!---------------------------------------------------------------------------------------------------
!> @brief take conjugate complex
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function conjg__(self)
class(quaternion), intent(in) :: self
conjg__ = [self%w,-self%x,-self%y,-self%z]
end function conjg__
!---------------------------------------------------------------------------------------------------
!> @brief homomorph
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function homomorphed(self)
class(quaternion), intent(in) :: self
homomorphed = - self
end function homomorphed
!---------------------------------------------------------------------------------------------------
!> @brief return as plain array
!---------------------------------------------------------------------------------------------------
pure function asArray(self)
real(pReal), dimension(4) :: asArray
class(quaternion), intent(in) :: self
asArray = [self%w,self%x,self%y,self%z]
end function asArray
!---------------------------------------------------------------------------------------------------
!> @brief real part (scalar)
!---------------------------------------------------------------------------------------------------
pure function real__(self)
real(pReal) :: real__
class(quaternion), intent(in) :: self
real__ = self%w
end function real__
!---------------------------------------------------------------------------------------------------
!> @brief imaginary part (3-vector)
!---------------------------------------------------------------------------------------------------
pure function aimag__(self)
real(pReal), dimension(3) :: aimag__
class(quaternion), intent(in) :: self
aimag__ = [self%x,self%y,self%z]
end function aimag__
!---------------------------------------------------------------------------------------------------
!> @brief inverse
!---------------------------------------------------------------------------------------------------
type(quaternion) elemental pure function inverse(self)
class(quaternion), intent(in) :: self
inverse = conjg(self)/abs(self)**2.0_pReal
end function inverse
!--------------------------------------------------------------------------------------------------
!> @brief check correctness of some quaternions functions
!--------------------------------------------------------------------------------------------------
subroutine selfTest
real(pReal), dimension(4) :: qu
type(quaternion) :: q, q_2
if(dNeq(abs(P),1.0_pReal)) error stop 'P not in {-1,+1}'
call random_number(qu)
qu = (qu-0.5_pReal) * 2.0_pReal
q = quaternion(qu)
q_2= qu
if(any(dNeq(q%asArray(),q_2%asArray()))) error stop 'assign_vec__'
q_2 = q + q
if(any(dNeq(q_2%asArray(),2.0_pReal*qu))) error stop 'add__'
q_2 = q - q
if(any(dNeq0(q_2%asArray()))) error stop 'sub__'
q_2 = q * 5.0_pReal
if(any(dNeq(q_2%asArray(),5.0_pReal*qu))) error stop 'mul__'
q_2 = q / 0.5_pReal
if(any(dNeq(q_2%asArray(),2.0_pReal*qu))) error stop 'div__'
q_2 = q * 0.3_pReal
if(dNeq0(abs(q)) .and. q_2 == q) error stop 'eq__'
q_2 = q
if(q_2 /= q) error stop 'neq__'
if(dNeq(abs(q),norm2(qu))) error stop 'abs__'
if(dNeq(abs(q)**2.0_pReal, real(q*q%conjg()),1.0e-14_pReal)) &
error stop 'abs__/*conjg'
if(any(dNeq(q%asArray(),qu))) error stop 'eq__'
if(dNeq(q%real(), qu(1))) error stop 'real()'
if(any(dNeq(q%aimag(), qu(2:4)))) error stop 'aimag()'
q_2 = q%homomorphed()
if(q /= q_2* (-1.0_pReal)) error stop 'homomorphed'
if(dNeq(q_2%real(), qu(1)* (-1.0_pReal))) error stop 'homomorphed/real'
if(any(dNeq(q_2%aimag(),qu(2:4)*(-1.0_pReal)))) error stop 'homomorphed/aimag'
q_2 = conjg(q)
if(dNeq(abs(q),abs(q_2))) error stop 'conjg/abs'
if(q /= conjg(q_2)) error stop 'conjg/involution'
if(dNeq(q_2%real(), q%real())) error stop 'conjg/real'
if(any(dNeq(q_2%aimag(),q%aimag()*(-1.0_pReal)))) error stop 'conjg/aimag'
if(abs(q) > 0.0_pReal) then
q_2 = q * q%inverse()
if( dNeq(real(q_2), 1.0_pReal,1.0e-15_pReal)) error stop 'inverse/real'
if(any(dNeq0(aimag(q_2), 1.0e-15_pReal))) error stop 'inverse/aimag'
q_2 = q/abs(q)
q_2 = conjg(q_2) - inverse(q_2)
if(any(dNeq0(q_2%asArray(),1.0e-15_pReal))) error stop 'inverse/conjg'
endif
if(dNeq(dot_product(qu,qu),dot_product(q,q))) error stop 'dot_product'
#if !(defined(__GFORTRAN__) && __GNUC__ < 9)
if (norm2(aimag(q)) > 0.0_pReal) then
if (dNeq0(abs(q-exp(log(q))),1.0e-13_pReal)) error stop 'exp/log'
if (dNeq0(abs(q-log(exp(q))),1.0e-13_pReal)) error stop 'log/exp'
endif
#endif
end subroutine selfTest
end module quaternions

View File

@ -47,16 +47,16 @@
!---------------------------------------------------------------------------------------------------
module rotations
use prec
use IO
use math
use quaternions
implicit none
private
real(pReal), parameter :: P = -1.0_pReal !< parameter for orientation conversion.
type, public :: rotation
type(quaternion) :: q
real(pReal), dimension(4) :: q
contains
procedure, public :: asQuaternion
procedure, public :: asEulers
@ -103,7 +103,6 @@ contains
!--------------------------------------------------------------------------------------------------
subroutine rotations_init
call quaternions_init
print'(/,a)', ' <<<+- rotations init -+>>>'; flush(IO_STDOUT)
print*, 'Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015'
@ -122,7 +121,7 @@ pure function asQuaternion(self)
class(rotation), intent(in) :: self
real(pReal), dimension(4) :: asQuaternion
asQuaternion = self%q%asArray()
asQuaternion = self%q
end function asQuaternion
!---------------------------------------------------------------------------------------------------
@ -131,7 +130,7 @@ pure function asEulers(self)
class(rotation), intent(in) :: self
real(pReal), dimension(3) :: asEulers
asEulers = qu2eu(self%q%asArray())
asEulers = qu2eu(self%q)
end function asEulers
!---------------------------------------------------------------------------------------------------
@ -140,7 +139,7 @@ pure function asAxisAngle(self)
class(rotation), intent(in) :: self
real(pReal), dimension(4) :: asAxisAngle
asAxisAngle = qu2ax(self%q%asArray())
asAxisAngle = qu2ax(self%q)
end function asAxisAngle
!---------------------------------------------------------------------------------------------------
@ -149,7 +148,7 @@ pure function asMatrix(self)
class(rotation), intent(in) :: self
real(pReal), dimension(3,3) :: asMatrix
asMatrix = qu2om(self%q%asArray())
asMatrix = qu2om(self%q)
end function asMatrix
!---------------------------------------------------------------------------------------------------
@ -158,7 +157,7 @@ pure function asRodrigues(self)
class(rotation), intent(in) :: self
real(pReal), dimension(4) :: asRodrigues
asRodrigues = qu2ro(self%q%asArray())
asRodrigues = qu2ro(self%q)
end function asRodrigues
!---------------------------------------------------------------------------------------------------
@ -167,7 +166,7 @@ pure function asHomochoric(self)
class(rotation), intent(in) :: self
real(pReal), dimension(3) :: asHomochoric
asHomochoric = qu2ho(self%q%asArray())
asHomochoric = qu2ho(self%q)
end function asHomochoric
@ -259,7 +258,7 @@ pure elemental function rotRot__(self,R) result(rRot)
type(rotation) :: rRot
class(rotation), intent(in) :: self,R
rRot = rotation(self%q*R%q)
rRot = rotation(multiply_quaternion(self%q,R%q))
call rRot%standardize()
end function rotRot__
@ -272,14 +271,14 @@ pure elemental subroutine standardize(self)
class(rotation), intent(inout) :: self
if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed()
if (self%q(1) < 0.0_pReal) self%q = - self%q
end subroutine standardize
!---------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief rotate a vector passively (default) or actively
!> @brief Rotate a vector passively (default) or actively.
!---------------------------------------------------------------------------------------------------
pure function rotVector(self,v,active) result(vRot)
@ -288,9 +287,8 @@ pure function rotVector(self,v,active) result(vRot)
real(pReal), intent(in), dimension(3) :: v
logical, intent(in), optional :: active
real(pReal), dimension(3) :: v_normed
type(quaternion) :: q
logical :: passive
real(pReal), dimension(4) :: v_normed, q
logical :: passive
if (present(active)) then
passive = .not. active
@ -301,13 +299,13 @@ pure function rotVector(self,v,active) result(vRot)
if (dEq0(norm2(v))) then
vRot = v
else
v_normed = v/norm2(v)
v_normed = [0.0_pReal,v]/norm2(v)
if (passive) then
q = self%q * (quaternion([0.0_pReal, v_normed(1), v_normed(2), v_normed(3)]) * conjg(self%q) )
q = multiply_quaternion(self%q, multiply_quaternion(v_normed, conjugate_quaternion(self%q)))
else
q = conjg(self%q) * (quaternion([0.0_pReal, v_normed(1), v_normed(2), v_normed(3)]) * self%q )
q = multiply_quaternion(conjugate_quaternion(self%q), multiply_quaternion(v_normed, self%q))
endif
vRot = q%aimag()*norm2(v)
vRot = q(2:4)*norm2(v)
endif
end function rotVector
@ -315,8 +313,8 @@ end function rotVector
!---------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief rotate a rank-2 tensor passively (default) or actively
!> @details: rotation is based on rotation matrix
!> @brief Rotate a rank-2 tensor passively (default) or actively.
!> @details: Rotation is based on rotation matrix
!---------------------------------------------------------------------------------------------------
pure function rotTensor2(self,T,active) result(tRot)
@ -403,7 +401,7 @@ pure elemental function misorientation(self,other)
type(rotation) :: misorientation
class(rotation), intent(in) :: self, other
misorientation%q = other%q * conjg(self%q)
misorientation%q = multiply_quaternion(other%q, conjugate_quaternion(self%q))
end function misorientation
@ -1338,7 +1336,7 @@ end function cu2ho
!--------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief determine to which pyramid a point in a cubic grid belongs
!> @brief Determine to which pyramid a point in a cubic grid belongs.
!--------------------------------------------------------------------------
pure function GetPyramidOrder(xyz)
@ -1362,7 +1360,39 @@ end function GetPyramidOrder
!--------------------------------------------------------------------------------------------------
!> @brief check correctness of some rotations functions
!> @brief Multiply two quaternions.
!--------------------------------------------------------------------------------------------------
pure function multiply_quaternion(qu1,qu2)
real(pReal), dimension(4), intent(in) :: qu1, qu2
real(pReal), dimension(4) :: multiply_quaternion
multiply_quaternion(1) = qu1(1)*qu2(1) - qu1(2)*qu2(2) - qu1(3)*qu2(3) - qu1(4)*qu2(4)
multiply_quaternion(2) = qu1(1)*qu2(2) + qu1(2)*qu2(1) + P * (qu1(3)*qu2(4) - qu1(4)*qu2(3))
multiply_quaternion(3) = qu1(1)*qu2(3) + qu1(3)*qu2(1) + P * (qu1(4)*qu2(2) - qu1(2)*qu2(4))
multiply_quaternion(4) = qu1(1)*qu2(4) + qu1(4)*qu2(1) + P * (qu1(2)*qu2(3) - qu1(3)*qu2(2))
end function multiply_quaternion
!--------------------------------------------------------------------------------------------------
!> @brief Calculate conjugate complex of a quaternion.
!--------------------------------------------------------------------------------------------------
pure function conjugate_quaternion(qu)
real(pReal), dimension(4), intent(in) :: qu
real(pReal), dimension(4) :: conjugate_quaternion
conjugate_quaternion = [qu(1), -qu(2), -qu(3), -qu(4)]
end function conjugate_quaternion
!--------------------------------------------------------------------------------------------------
!> @brief Check correctness of some rotations functions.
!--------------------------------------------------------------------------------------------------
subroutine selfTest
@ -1374,7 +1404,8 @@ subroutine selfTest
real :: A,B
integer :: i
do i=1,10
do i = 1, 10
#if defined(__GFORTRAN__) && __GNUC__<9
if(i<7) cycle