added Colormap.at(fraction) to interpolate
This commit is contained in:
parent
63c76abed8
commit
947bf946e1
|
@ -6,6 +6,7 @@ from pathlib import Path
|
||||||
from typing import Sequence, Union, TextIO
|
from typing import Sequence, Union, TextIO
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import scipy.interpolate as interp
|
||||||
import matplotlib as mpl
|
import matplotlib as mpl
|
||||||
if os.name == 'posix' and 'DISPLAY' not in os.environ:
|
if os.name == 'posix' and 'DISPLAY' not in os.environ:
|
||||||
mpl.use('Agg')
|
mpl.use('Agg')
|
||||||
|
@ -191,6 +192,28 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
return Colormap.from_range(definition['low'],definition['high'],name,N)
|
return Colormap.from_range(definition['low'],definition['high'],name,N)
|
||||||
|
|
||||||
|
|
||||||
|
def at(self,
|
||||||
|
fraction : float) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Interpolate color at fraction.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
fraction : float
|
||||||
|
Fractional coordinate to evaluate Colormap at.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
color : np.ndarray, shape(3)
|
||||||
|
RGB values of interpolated color.
|
||||||
|
|
||||||
|
"""
|
||||||
|
return interp.interp1d(np.linspace(0,1,self.N),
|
||||||
|
self.colors,
|
||||||
|
axis=0,
|
||||||
|
assume_sorted=True)(fraction)
|
||||||
|
|
||||||
|
|
||||||
def shade(self,
|
def shade(self,
|
||||||
field: np.ndarray,
|
field: np.ndarray,
|
||||||
bounds: Sequence[float] = None,
|
bounds: Sequence[float] = None,
|
||||||
|
@ -213,7 +236,6 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
RGBA image of shaded data.
|
RGBA image of shaded data.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
N = len(self.colors)
|
|
||||||
mask = np.logical_not(np.isnan(field) if gap is None else \
|
mask = np.logical_not(np.isnan(field) if gap is None else \
|
||||||
np.logical_or (np.isnan(field), field == gap)) # mask NaN (and gap if present)
|
np.logical_or (np.isnan(field), field == gap)) # mask NaN (and gap if present)
|
||||||
|
|
||||||
|
@ -227,7 +249,7 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
|
|
||||||
return Image.fromarray(
|
return Image.fromarray(
|
||||||
(np.dstack((
|
(np.dstack((
|
||||||
self.colors[(np.round(np.clip((field-lo)/(hi-lo),0.0,1.0)*(N-1))).astype(np.uint16),:3],
|
self.colors[(np.round(np.clip((field-lo)/(hi-lo),0.0,1.0)*(self.N-1))).astype(np.uint16),:3],
|
||||||
mask.astype(float)
|
mask.astype(float)
|
||||||
)
|
)
|
||||||
)*255
|
)*255
|
||||||
|
@ -343,7 +365,7 @@ class Colormap(mpl.colors.ListedColormap):
|
||||||
# ToDo: test in GOM
|
# ToDo: test in GOM
|
||||||
GOM_str = '1 1 {name} 9 {name} '.format(name=self.name.replace(" ","_")) \
|
GOM_str = '1 1 {name} 9 {name} '.format(name=self.name.replace(" ","_")) \
|
||||||
+ '0 1 0 3 0 0 -1 9 \\ 0 0 0 255 255 255 0 0 255 ' \
|
+ '0 1 0 3 0 0 -1 9 \\ 0 0 0 255 255 255 0 0 255 ' \
|
||||||
+ f'30 NO_UNIT 1 1 64 64 64 255 1 0 0 0 0 0 0 3 0 {len(self.colors)}' \
|
+ f'30 NO_UNIT 1 1 64 64 64 255 1 0 0 0 0 0 0 3 0 {self.N}' \
|
||||||
+ ' '.join([f' 0 {c[0]} {c[1]} {c[2]} 255 1' for c in reversed((self.colors*255).astype(int))]) \
|
+ ' '.join([f' 0 {c[0]} {c[1]} {c[2]} 255 1' for c in reversed((self.colors*255).astype(int))]) \
|
||||||
+ '\n'
|
+ '\n'
|
||||||
|
|
||||||
|
|
|
@ -139,6 +139,13 @@ class TestColormap:
|
||||||
c += c
|
c += c
|
||||||
assert (np.allclose(c.colors[:len(c.colors)//2],c.colors[len(c.colors)//2:]))
|
assert (np.allclose(c.colors[:len(c.colors)//2],c.colors[len(c.colors)//2:]))
|
||||||
|
|
||||||
|
@pytest.mark.parametrize('N,cmap',[
|
||||||
|
(8,'gray'),
|
||||||
|
(17,'gray'),
|
||||||
|
])
|
||||||
|
def test_at(self, N, cmap):
|
||||||
|
assert np.allclose(Colormap.from_predefined(cmap,N=N).at(0.5)[:3],0.5,rtol=0.005)
|
||||||
|
|
||||||
@pytest.mark.parametrize('bounds',[None,[2,10]])
|
@pytest.mark.parametrize('bounds',[None,[2,10]])
|
||||||
def test_shade(self,ref_path,update,bounds):
|
def test_shade(self,ref_path,update,bounds):
|
||||||
data = np.add(*np.indices((10, 11)))
|
data = np.add(*np.indices((10, 11)))
|
||||||
|
|
Loading…
Reference in New Issue