same order as in mechanics
This commit is contained in:
parent
60580cc45a
commit
93bc66d19f
|
@ -137,8 +137,8 @@ for name in filenames:
|
||||||
F = np.array(list(map(float,table.data[column:column+items['tensor']['dim']])),'d').reshape(items['tensor']['shape'])
|
F = np.array(list(map(float,table.data[column:column+items['tensor']['dim']])),'d').reshape(items['tensor']['shape'])
|
||||||
(U,S,Vh) = np.linalg.svd(F) # singular value decomposition
|
(U,S,Vh) = np.linalg.svd(F) # singular value decomposition
|
||||||
R_inv = np.dot(U,Vh).T # rotation of polar decomposition
|
R_inv = np.dot(U,Vh).T # rotation of polar decomposition
|
||||||
stretch['U'] = np.dot(R_inv,F) # F = RU
|
|
||||||
stretch['V'] = np.dot(F,R_inv) # F = VR
|
stretch['V'] = np.dot(F,R_inv) # F = VR
|
||||||
|
stretch['U'] = np.dot(R_inv,F) # F = RU
|
||||||
|
|
||||||
for theStretch in stretches:
|
for theStretch in stretches:
|
||||||
(D,V) = np.linalg.eigh((stretch[theStretch]+stretch[theStretch].T)*0.5) # eigen decomposition (of symmetric(ed) matrix)
|
(D,V) = np.linalg.eigh((stretch[theStretch]+stretch[theStretch].T)*0.5) # eigen decomposition (of symmetric(ed) matrix)
|
||||||
|
|
Loading…
Reference in New Issue