does not make sense to store and use the 6-vector version of the Schmid

matrix
This commit is contained in:
Martin Diehl 2018-08-29 12:03:31 +02:00
parent baeb449e07
commit 922273f230
1 changed files with 18 additions and 21 deletions

View File

@ -68,9 +68,6 @@ module plastic_phenopowerlaw
interaction_SlipTwin, & !< slip resistance from twin activity
interaction_TwinSlip, & !< twin resistance from slip activity
interaction_TwinTwin !< twin resistance from twin activity
real(pReal), dimension(:,:), allocatable :: &
Schmid_slip6, &
Schmid_twin6
real(pReal), dimension(:,:,:), allocatable :: &
Schmid_slip, &
Schmid_twin
@ -363,7 +360,6 @@ subroutine plastic_phenopowerlaw_init
allocate(temp1(prm%totalNslip,prm%totalNslip),source = 0.0_pReal)
allocate(temp2(prm%totalNslip,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal)
allocate(prm%Schmid_slip6(6,prm%totalNslip),source = 0.0_pReal)
allocate(prm%nonSchmid_pos(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
allocate(prm%nonSchmid_neg(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
i = 0_pInt
@ -373,7 +369,6 @@ subroutine plastic_phenopowerlaw_init
mySlipSystems: do j = 1_pInt,prm%Nslip(f)
i = i + 1_pInt
prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
prm%Schmid_slip6(1:6,i) = lattice_Sslip_v(1:6,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
!prm%nonSchmid_pos(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
!prm%nonSchmid_neg(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
!do k = 1,size(prm%nonSchmidCoeff)
@ -410,7 +405,6 @@ subroutine plastic_phenopowerlaw_init
allocate(temp1(prm%totalNtwin,prm%totalNslip),source = 0.0_pReal)
allocate(temp2(prm%totalNtwin,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%Schmid_twin6(6,prm%totalNtwin),source = 0.0_pReal)
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
i = 0_pInt
myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X
@ -418,7 +412,6 @@ subroutine plastic_phenopowerlaw_init
myTwinSystems: do j = 1_pInt,prm%Ntwin(f)
i = i + 1_pInt
prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,sum(lattice_NTwinsystem(1:f-1,p))+j,p)
prm%Schmid_twin6(1:6,i) = lattice_Stwin_v(1:6,sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
prm%shear_twin(i) = lattice_shearTwin(sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
slipFamilies: do o = 1_pInt,size(prm%Nslip,1)
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
@ -505,7 +498,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
dNeq0
use math, only: &
math_mul33xx33,&
math_Mandel33to6, &
math_Mandel6to33, &
math_Plain3333to99
use material, only: &
phasememberAt, &
@ -534,6 +527,8 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
gdot_slip_pos,gdot_slip_neg, &
dgdot_dtauslip_pos,dgdot_dtauslip_neg, &
gdot_twin,dgdot_dtautwin,tau_twin
real(pReal), dimension(3,3) :: &
S !< Second-Piola Kirchhoff stress
real(pReal), dimension(3,3,3,3) :: &
dLp_dMstar !< derivative of Lp with respect to Mstar as 4th order tensor
type(tParameters) :: prm
@ -547,11 +542,12 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
Lp = 0.0_pReal
dLp_dMstar = 0.0_pReal
S = math_Mandel6to33(Mstar_v)
!--------------------------------------------------------------------------------------------------
! Slip part
do j = 1_pInt, prm%totalNslip
tau_slip_pos = dot_product(Mstar_v,prm%Schmid_slip6(1:6,j))
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
tau_slip_neg = tau_slip_pos
!do k = 1,size(prm%nonSchmidCoeff)
! tau_slip_pos = tau_slip_pos &
@ -585,7 +581,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
! Twinning part
do j = 1_pInt, prm%totalNtwin
tau_twin = dot_product(Mstar_v,prm%Schmid_twin6(1:6,j))
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin&
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
@ -634,8 +630,8 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
ssat_offset, &
tau_slip_pos,tau_slip_neg,tau_twin
!real(pReal), dimension(3,3) :: &
! Mstar
real(pReal), dimension(3,3) :: &
S !< Second-Piola Kirchhoff stress
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
gdot_slip,left_SlipSlip,right_SlipSlip
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
@ -650,7 +646,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
dst => dotState(phase_plasticityInstance(material_phase(ipc,ip,el))))
dst%whole(:,of) = 0.0_pReal
!Mstar = math_Mandel6to33(Mstar6)
S = math_Mandel6to33(Mstar6)
!--------------------------------------------------------------------------------------------------
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
@ -666,7 +662,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) **prm%a_slip &
* sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset))
tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
tau_slip_neg = tau_slip_pos
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
@ -678,7 +674,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
enddo
do j = 1_pInt, prm%totalNtwin
tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* abs(tau_twin/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
enddo
@ -733,8 +729,8 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
ip, & !< integration point
el !< element !< microstructure state
!real(pReal), dimension(3,3) :: &
! Mstar
real(pReal), dimension(3,3) :: &
S !< Second-Piola Kirchhoff stress
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
plastic_phenopowerlaw_postResults
@ -753,6 +749,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
plastic_phenopowerlaw_postResults = 0.0_pReal
c = 0_pInt
S = math_Mandel6to33(Mstar6)
outputsLoop: do o = 1_pInt,size(prm%outputID)
select case(prm%outputID(o))
@ -766,7 +763,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
case (shearrate_slip_ID)
do j = 1_pInt, prm%totalNslip
tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
tau_slip_neg = tau_slip_pos
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
@ -780,7 +777,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
case (resolvedstress_slip_ID)
do j = 1_pInt, prm%totalNslip
plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
enddo
c = c + prm%totalNslip
@ -800,7 +797,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
case (shearrate_twin_ID)
do j = 1_pInt, prm%totalNtwin
tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**&
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
@ -809,7 +806,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
case (resolvedstress_twin_ID)
do j = 1_pInt, prm%totalNtwin
plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
enddo
c = c + prm%totalNtwin