does not make sense to store and use the 6-vector version of the Schmid
matrix
This commit is contained in:
parent
baeb449e07
commit
922273f230
|
@ -68,9 +68,6 @@ module plastic_phenopowerlaw
|
||||||
interaction_SlipTwin, & !< slip resistance from twin activity
|
interaction_SlipTwin, & !< slip resistance from twin activity
|
||||||
interaction_TwinSlip, & !< twin resistance from slip activity
|
interaction_TwinSlip, & !< twin resistance from slip activity
|
||||||
interaction_TwinTwin !< twin resistance from twin activity
|
interaction_TwinTwin !< twin resistance from twin activity
|
||||||
real(pReal), dimension(:,:), allocatable :: &
|
|
||||||
Schmid_slip6, &
|
|
||||||
Schmid_twin6
|
|
||||||
real(pReal), dimension(:,:,:), allocatable :: &
|
real(pReal), dimension(:,:,:), allocatable :: &
|
||||||
Schmid_slip, &
|
Schmid_slip, &
|
||||||
Schmid_twin
|
Schmid_twin
|
||||||
|
@ -363,7 +360,6 @@ subroutine plastic_phenopowerlaw_init
|
||||||
allocate(temp1(prm%totalNslip,prm%totalNslip),source = 0.0_pReal)
|
allocate(temp1(prm%totalNslip,prm%totalNslip),source = 0.0_pReal)
|
||||||
allocate(temp2(prm%totalNslip,prm%totalNtwin),source = 0.0_pReal)
|
allocate(temp2(prm%totalNslip,prm%totalNtwin),source = 0.0_pReal)
|
||||||
allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal)
|
allocate(prm%Schmid_slip(3,3,prm%totalNslip),source = 0.0_pReal)
|
||||||
allocate(prm%Schmid_slip6(6,prm%totalNslip),source = 0.0_pReal)
|
|
||||||
allocate(prm%nonSchmid_pos(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
|
allocate(prm%nonSchmid_pos(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
|
||||||
allocate(prm%nonSchmid_neg(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
|
allocate(prm%nonSchmid_neg(3,3,size(prm%nonSchmidCoeff)+1,prm%totalNslip),source = 0.0_pReal)
|
||||||
i = 0_pInt
|
i = 0_pInt
|
||||||
|
@ -373,7 +369,6 @@ subroutine plastic_phenopowerlaw_init
|
||||||
mySlipSystems: do j = 1_pInt,prm%Nslip(f)
|
mySlipSystems: do j = 1_pInt,prm%Nslip(f)
|
||||||
i = i + 1_pInt
|
i = i + 1_pInt
|
||||||
prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
prm%Schmid_slip(1:3,1:3,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
||||||
prm%Schmid_slip6(1:6,i) = lattice_Sslip_v(1:6,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
|
||||||
!prm%nonSchmid_pos(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
!prm%nonSchmid_pos(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
||||||
!prm%nonSchmid_neg(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
!prm%nonSchmid_neg(1:3,1:3,1,i) = lattice_Sslip(1:3,1:3,1,sum(lattice_Nslipsystem(1:f-1,p))+j,p)
|
||||||
!do k = 1,size(prm%nonSchmidCoeff)
|
!do k = 1,size(prm%nonSchmidCoeff)
|
||||||
|
@ -410,7 +405,6 @@ subroutine plastic_phenopowerlaw_init
|
||||||
allocate(temp1(prm%totalNtwin,prm%totalNslip),source = 0.0_pReal)
|
allocate(temp1(prm%totalNtwin,prm%totalNslip),source = 0.0_pReal)
|
||||||
allocate(temp2(prm%totalNtwin,prm%totalNtwin),source = 0.0_pReal)
|
allocate(temp2(prm%totalNtwin,prm%totalNtwin),source = 0.0_pReal)
|
||||||
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
|
allocate(prm%Schmid_twin(3,3,prm%totalNtwin),source = 0.0_pReal)
|
||||||
allocate(prm%Schmid_twin6(6,prm%totalNtwin),source = 0.0_pReal)
|
|
||||||
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
|
allocate(prm%shear_twin(prm%totalNtwin),source = 0.0_pReal)
|
||||||
i = 0_pInt
|
i = 0_pInt
|
||||||
myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X
|
myTwinFamilies: do f = 1_pInt,size(prm%Ntwin,1) ! >>> interaction twin -- X
|
||||||
|
@ -418,7 +412,6 @@ subroutine plastic_phenopowerlaw_init
|
||||||
myTwinSystems: do j = 1_pInt,prm%Ntwin(f)
|
myTwinSystems: do j = 1_pInt,prm%Ntwin(f)
|
||||||
i = i + 1_pInt
|
i = i + 1_pInt
|
||||||
prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,sum(lattice_NTwinsystem(1:f-1,p))+j,p)
|
prm%Schmid_twin(1:3,1:3,i) = lattice_Stwin(1:3,1:3,sum(lattice_NTwinsystem(1:f-1,p))+j,p)
|
||||||
prm%Schmid_twin6(1:6,i) = lattice_Stwin_v(1:6,sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
|
|
||||||
prm%shear_twin(i) = lattice_shearTwin(sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
|
prm%shear_twin(i) = lattice_shearTwin(sum(lattice_Ntwinsystem(1:f-1,p))+j,p)
|
||||||
slipFamilies: do o = 1_pInt,size(prm%Nslip,1)
|
slipFamilies: do o = 1_pInt,size(prm%Nslip,1)
|
||||||
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
index_otherFamily = sum(prm%Nslip(1:o-1_pInt))
|
||||||
|
@ -505,7 +498,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
|
||||||
dNeq0
|
dNeq0
|
||||||
use math, only: &
|
use math, only: &
|
||||||
math_mul33xx33,&
|
math_mul33xx33,&
|
||||||
math_Mandel33to6, &
|
math_Mandel6to33, &
|
||||||
math_Plain3333to99
|
math_Plain3333to99
|
||||||
use material, only: &
|
use material, only: &
|
||||||
phasememberAt, &
|
phasememberAt, &
|
||||||
|
@ -534,6 +527,8 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
|
||||||
gdot_slip_pos,gdot_slip_neg, &
|
gdot_slip_pos,gdot_slip_neg, &
|
||||||
dgdot_dtauslip_pos,dgdot_dtauslip_neg, &
|
dgdot_dtauslip_pos,dgdot_dtauslip_neg, &
|
||||||
gdot_twin,dgdot_dtautwin,tau_twin
|
gdot_twin,dgdot_dtautwin,tau_twin
|
||||||
|
real(pReal), dimension(3,3) :: &
|
||||||
|
S !< Second-Piola Kirchhoff stress
|
||||||
real(pReal), dimension(3,3,3,3) :: &
|
real(pReal), dimension(3,3,3,3) :: &
|
||||||
dLp_dMstar !< derivative of Lp with respect to Mstar as 4th order tensor
|
dLp_dMstar !< derivative of Lp with respect to Mstar as 4th order tensor
|
||||||
type(tParameters) :: prm
|
type(tParameters) :: prm
|
||||||
|
@ -547,11 +542,12 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
|
||||||
Lp = 0.0_pReal
|
Lp = 0.0_pReal
|
||||||
dLp_dMstar = 0.0_pReal
|
dLp_dMstar = 0.0_pReal
|
||||||
|
|
||||||
|
S = math_Mandel6to33(Mstar_v)
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! Slip part
|
! Slip part
|
||||||
do j = 1_pInt, prm%totalNslip
|
do j = 1_pInt, prm%totalNslip
|
||||||
|
|
||||||
tau_slip_pos = dot_product(Mstar_v,prm%Schmid_slip6(1:6,j))
|
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||||
tau_slip_neg = tau_slip_pos
|
tau_slip_neg = tau_slip_pos
|
||||||
!do k = 1,size(prm%nonSchmidCoeff)
|
!do k = 1,size(prm%nonSchmidCoeff)
|
||||||
! tau_slip_pos = tau_slip_pos &
|
! tau_slip_pos = tau_slip_pos &
|
||||||
|
@ -585,7 +581,7 @@ subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMstar99,Mstar_v,ipc,ip,
|
||||||
! Twinning part
|
! Twinning part
|
||||||
do j = 1_pInt, prm%totalNtwin
|
do j = 1_pInt, prm%totalNtwin
|
||||||
|
|
||||||
tau_twin = dot_product(Mstar_v,prm%Schmid_twin6(1:6,j))
|
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||||
gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin&
|
gdot_twin = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**prm%n_twin&
|
||||||
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||||
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
|
Lp = Lp + gdot_twin*prm%Schmid_twin(1:3,1:3,j)
|
||||||
|
@ -634,8 +630,8 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
||||||
ssat_offset, &
|
ssat_offset, &
|
||||||
tau_slip_pos,tau_slip_neg,tau_twin
|
tau_slip_pos,tau_slip_neg,tau_twin
|
||||||
|
|
||||||
!real(pReal), dimension(3,3) :: &
|
real(pReal), dimension(3,3) :: &
|
||||||
! Mstar
|
S !< Second-Piola Kirchhoff stress
|
||||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNslip) :: &
|
||||||
gdot_slip,left_SlipSlip,right_SlipSlip
|
gdot_slip,left_SlipSlip,right_SlipSlip
|
||||||
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
|
real(pReal), dimension(param(phase_plasticityInstance(material_phase(ipc,ip,el)))%totalNtwin) :: &
|
||||||
|
@ -650,7 +646,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
||||||
dst => dotState(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
dst => dotState(phase_plasticityInstance(material_phase(ipc,ip,el))))
|
||||||
|
|
||||||
dst%whole(:,of) = 0.0_pReal
|
dst%whole(:,of) = 0.0_pReal
|
||||||
!Mstar = math_Mandel6to33(Mstar6)
|
S = math_Mandel6to33(Mstar6)
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
|
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
|
||||||
|
@ -666,7 +662,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
||||||
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) **prm%a_slip &
|
right_SlipSlip(j) = abs(1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset)) **prm%a_slip &
|
||||||
* sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset))
|
* sign(1.0_pReal,1.0_pReal-stt%s_slip(j,of) / (prm%tausat_slip(j)+ssat_offset))
|
||||||
|
|
||||||
tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
|
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||||
tau_slip_neg = tau_slip_pos
|
tau_slip_neg = tau_slip_pos
|
||||||
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||||
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||||
|
@ -678,7 +674,7 @@ subroutine plastic_phenopowerlaw_dotState(Mstar6,ipc,ip,el)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
do j = 1_pInt, prm%totalNtwin
|
do j = 1_pInt, prm%totalNtwin
|
||||||
tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
|
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||||
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* abs(tau_twin/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState
|
gdot_twin(j) = (1.0_pReal-stt%sumF(of))*prm%gdot0_twin* abs(tau_twin/stt%s_twin(j,of))**prm%n_twin & !ToDo: save to dotState
|
||||||
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
* max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||||
enddo
|
enddo
|
||||||
|
@ -733,8 +729,8 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
||||||
ip, & !< integration point
|
ip, & !< integration point
|
||||||
el !< element !< microstructure state
|
el !< element !< microstructure state
|
||||||
|
|
||||||
!real(pReal), dimension(3,3) :: &
|
real(pReal), dimension(3,3) :: &
|
||||||
! Mstar
|
S !< Second-Piola Kirchhoff stress
|
||||||
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
|
real(pReal), dimension(plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
|
||||||
plastic_phenopowerlaw_postResults
|
plastic_phenopowerlaw_postResults
|
||||||
|
|
||||||
|
@ -753,6 +749,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
||||||
|
|
||||||
plastic_phenopowerlaw_postResults = 0.0_pReal
|
plastic_phenopowerlaw_postResults = 0.0_pReal
|
||||||
c = 0_pInt
|
c = 0_pInt
|
||||||
|
S = math_Mandel6to33(Mstar6)
|
||||||
|
|
||||||
outputsLoop: do o = 1_pInt,size(prm%outputID)
|
outputsLoop: do o = 1_pInt,size(prm%outputID)
|
||||||
select case(prm%outputID(o))
|
select case(prm%outputID(o))
|
||||||
|
@ -766,7 +763,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
||||||
|
|
||||||
case (shearrate_slip_ID)
|
case (shearrate_slip_ID)
|
||||||
do j = 1_pInt, prm%totalNslip
|
do j = 1_pInt, prm%totalNslip
|
||||||
tau_slip_pos = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
|
tau_slip_pos = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||||
tau_slip_neg = tau_slip_pos
|
tau_slip_neg = tau_slip_pos
|
||||||
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
!nonSchmidSystems: do k = 1,size(prm%nonSchmidCoeff)
|
||||||
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
! tau_slip_pos = tau_slip_pos + math_mul33xx33(Mstar,prm%nonSchmid_pos(1:3,1:3,k,j))
|
||||||
|
@ -780,7 +777,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
||||||
|
|
||||||
case (resolvedstress_slip_ID)
|
case (resolvedstress_slip_ID)
|
||||||
do j = 1_pInt, prm%totalNslip
|
do j = 1_pInt, prm%totalNslip
|
||||||
plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_slip6(1:6,j))
|
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||||
enddo
|
enddo
|
||||||
c = c + prm%totalNslip
|
c = c + prm%totalNslip
|
||||||
|
|
||||||
|
@ -800,7 +797,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
||||||
|
|
||||||
case (shearrate_twin_ID)
|
case (shearrate_twin_ID)
|
||||||
do j = 1_pInt, prm%totalNtwin
|
do j = 1_pInt, prm%totalNtwin
|
||||||
tau_twin = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
|
tau_twin = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||||
plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
|
plastic_phenopowerlaw_postResults(c+j) = (1.0_pReal-stt%sumF(of))*& ! 1-F
|
||||||
prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**&
|
prm%gdot0_twin*(abs(tau_twin)/stt%s_twin(j,of))**&
|
||||||
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
prm%n_twin*max(0.0_pReal,sign(1.0_pReal,tau_twin))
|
||||||
|
@ -809,7 +806,7 @@ function plastic_phenopowerlaw_postResults(Mstar6,ipc,ip,el)
|
||||||
|
|
||||||
case (resolvedstress_twin_ID)
|
case (resolvedstress_twin_ID)
|
||||||
do j = 1_pInt, prm%totalNtwin
|
do j = 1_pInt, prm%totalNtwin
|
||||||
plastic_phenopowerlaw_postResults(c+j) = dot_product(Mstar6,prm%Schmid_twin6(1:6,j))
|
plastic_phenopowerlaw_postResults(c+j) = math_mul33xx33(S,prm%Schmid_twin(1:3,1:3,j))
|
||||||
enddo
|
enddo
|
||||||
c = c + prm%totalNtwin
|
c = c + prm%totalNtwin
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue