correct algorithm for sampling of uniform orientations and fix for Halton series

Halton series gives strange results for large prime numbers, now always starting with 2 for first dimension, 3 for second etc.
Consecutive Halton numbers for rejection sampling seem to cause problems (i.e. introduce patterns).
Algorithm for uniformly distributed orientations with FWHM specified is taken from https://math.stackexchange.com/questions/131336.
WIP: Gauss filtering is currently not implemented!
This commit is contained in:
Martin Diehl 2018-02-21 20:32:52 +01:00
parent ae27660e86
commit 9173d12d14
1 changed files with 30 additions and 31 deletions

View File

@ -214,9 +214,6 @@ subroutine math_init
write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest
call random_seed(put = randInit) call random_seed(put = randInit)
randTest = halton(4,seed = randTest(1))
call math_check() call math_check()
end subroutine math_init end subroutine math_init
@ -1776,34 +1773,45 @@ function math_sampleGaussOri(center,FWHM)
implicit none implicit none
real(pReal), intent(in) :: FWHM real(pReal), intent(in) :: FWHM
real(pReal), dimension(3), intent(in) :: center real(pReal), dimension(3), intent(in) :: center
real(pReal) :: cosScatter,scatter real(pReal) :: scatter, omega
real(pReal), dimension(3) :: math_sampleGaussOri, disturb real(pReal), dimension(3) :: math_sampleGaussOri, axis
real(pReal), dimension(3), parameter :: ORIGIN = 0.0_pReal real(pReal), dimension(2) :: rnd
real(pReal), dimension(5) :: rnd real(pReal), dimension(3,3) :: R
noScatter: if (FWHM < 0.5_pReal*INRAD) then noScatter: if (FWHM < 0.5_pReal*INRAD) then
math_sampleGaussOri = center math_sampleGaussOri = center
else noScatter else noScatter
! Helming uses different distribution with Bessel functions ! Helming uses different distribution with Bessel functions
! therefore the gauss scatter width has to be scaled differently ! therefore the gauss scatter width has to be scaled differentlyuu
scatter = 0.95_pReal * FWHM scatter = 0.95_pReal * FWHM
cosScatter = cos(scatter)
do GaussConvolution: do
rnd = halton(5_pInt) selectiveSampling: if (FWHM*INRAD < 90.0_pReal) then
rnd(1:3) = 2.0_pReal*rnd(1:3)-1.0_pReal ! expand 1:3 to range [-1,+1] rnd = halton(2_pInt)
disturb = [ scatter * rnd(1), & ! phi1 axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1]
sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)), & ! Phi axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),&
scatter * rnd(3)] ! phi2 sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)]
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(ORIGIN,disturb)/scatter)**2_pReal)) exit do
enddo call random_number(rnd) ! no halton to avoid correlation
omega = (rnd(1)*(2.0_pReal*FWHM)**3.0_pReal)**(1.0_pReal/3.0_pReal)
if (rnd(2) < sin(omega)**2.0_pReal/omega**2.0_pReal) exit
enddo
R = math_axisAngleToR(axis,omega)
else selectiveSampling
R = math_EulerToR(math_sampleRandomOri())
endif selectiveSampling
exit
!if (rnd(3) <= exp(-(math_EulerMisorientation([0.0_pReal,0.0_pReal,0.0_pReal],&
! math_RtoEuler(R))/scatter)**2_pReal)) exit
enddo GaussConvolution
math_sampleGaussOri = math_RtoEuler(math_mul33x33(math_EulerToR(disturb),math_EulerToR(center))) math_sampleGaussOri = math_RtoEuler(math_mul33x33(R,math_EulerToR(center)))
endif noScatter endif noScatter
end function math_sampleGaussOri end function math_sampleGaussOri
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
!> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width !> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width
! at Half Maximum (FWHM) ! at Half Maximum (FWHM)
@ -2293,18 +2301,15 @@ end function math_invariantsSym33
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960. !> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
!> @author John Burkardt !> @author John Burkardt
!------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------
function halton(ndim, seed) function halton(ndim)
implicit none implicit none
integer(pInt), intent(in) :: & integer(pInt), intent(in) :: &
ndim !< dimension of the sequence ndim !< dimension of the sequence
real(pReal), intent(in), optional :: &
seed !< seed value [0.0,1.0]
real(pReal), dimension(ndim) :: & real(pReal), dimension(ndim) :: &
halton halton
integer(pInt), save :: & integer(pInt), save :: &
start, & current = 1_pInt
current
real(pReal), dimension(ndim) :: & real(pReal), dimension(ndim) :: &
base_inv base_inv
integer(pInt), dimension(ndim) :: & integer(pInt), dimension(ndim) :: &
@ -2491,15 +2496,9 @@ function halton(ndim, seed)
13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, & 13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, &
13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499],pInt) 13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499],pInt)
current = current + 1_pInt
if (present(seed)) then base = [(prime(i), i=1_pInt, ndim)]
start = int(seed * 1599.0_pReal,pInt) + 1_pInt ! select one prime number to start with
current = 1_pInt
else
current = current + 1_pInt
endif
base = [(prime(mod(start,1600_pInt)+i), i=1_pInt, ndim)]
base_inv = 1.0_pReal/real(base,pReal) base_inv = 1.0_pReal/real(base,pReal)
halton = 0.0_pReal halton = 0.0_pReal