more improvements
This commit is contained in:
parent
c0e7050867
commit
912926e604
|
@ -1246,7 +1246,7 @@ subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature
|
||||||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||||
StressRatio_p = stressRatio** prm%p(j)
|
StressRatio_p = stressRatio** prm%p(j)
|
||||||
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal)
|
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal) ! ToDo: no very helpful
|
||||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||||
!* Initial shear rates
|
!* Initial shear rates
|
||||||
DotGamma0 = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j)
|
DotGamma0 = state(instance)%rhoEdge(j,of)*prm%burgers_slip(j)* prm%v0(j)
|
||||||
|
@ -1429,21 +1429,8 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
||||||
plasticState, &
|
plasticState, &
|
||||||
phaseAt, phasememberAt
|
phaseAt, phasememberAt
|
||||||
use lattice, only: &
|
use lattice, only: &
|
||||||
lattice_Sslip, &
|
|
||||||
lattice_Stwin, &
|
|
||||||
lattice_Strans, &
|
|
||||||
lattice_maxNslipFamily, &
|
|
||||||
lattice_maxNtwinFamily, &
|
|
||||||
lattice_maxNtransFamily, &
|
|
||||||
lattice_NslipSystem, &
|
|
||||||
lattice_NtwinSystem, &
|
|
||||||
lattice_NtransSystem, &
|
|
||||||
lattice_sheartwin, &
|
|
||||||
lattice_mu, &
|
lattice_mu, &
|
||||||
lattice_structure, &
|
lattice_structure, &
|
||||||
lattice_fcc_twinNucleationSlipPair, &
|
|
||||||
lattice_fccTobcc_transNucleationTwinPair, &
|
|
||||||
lattice_fccTobcc_shearCritTrans, &
|
|
||||||
LATTICE_fcc_ID
|
LATTICE_fcc_ID
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
|
@ -1459,7 +1446,7 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
||||||
integer(pInt) :: instance,f,i,j,index_myFamily,s1,s2, &
|
integer(pInt) :: instance,f,i,j,index_myFamily,s1,s2, &
|
||||||
ph, &
|
ph, &
|
||||||
of
|
of
|
||||||
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,&
|
real(pReal) :: sumf,sumftr,StressRatio_p,BoltzmannRatio,DotGamma0,&
|
||||||
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0_twin,stressRatio,&
|
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0_twin,stressRatio,&
|
||||||
Ndot0_trans,StressRatio_s,EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, &
|
Ndot0_trans,StressRatio_s,EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, &
|
||||||
DotRhoDipFormation,DotRhoMultiplication,DotRhoEdgeEdgeAnnihilation
|
DotRhoDipFormation,DotRhoMultiplication,DotRhoEdgeEdgeAnnihilation
|
||||||
|
@ -1500,7 +1487,6 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
||||||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||||||
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
(prm%SolidSolutionStrength+prm%tau_peierls(j)))
|
||||||
StressRatio_p = stressRatio** prm%p(j)
|
StressRatio_p = stressRatio** prm%p(j)
|
||||||
StressRatio_pminus1 = stressRatio**(prm%p(j)-1.0_pReal)
|
|
||||||
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
BoltzmannRatio = prm%Qedge(j)/(kB*Temperature)
|
||||||
!* Initial shear rates
|
!* Initial shear rates
|
||||||
DotGamma0 = plasticState(ph)%state(j, of)*prm%burgers_slip(j)*prm%v0(j)
|
DotGamma0 = plasticState(ph)%state(j, of)*prm%burgers_slip(j)*prm%v0(j)
|
||||||
|
@ -1533,15 +1519,12 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
||||||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))
|
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))
|
||||||
|
|
||||||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||||||
DotRhoEdgeDipAnnihilation = &
|
DotRhoEdgeDipAnnihilation = ((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j)) &
|
||||||
((2.0_pReal*EdgeDipMinDistance)/prm%burgers_slip(j))*&
|
* state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||||||
state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
|
||||||
|
|
||||||
!* Dislocation dipole climb
|
!* Dislocation dipole climb
|
||||||
AtomicVolume = &
|
AtomicVolume = prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal) ! no need to calculate this over and over again
|
||||||
prm%CAtomicVolume*prm%burgers_slip(j)**(3.0_pReal)
|
VacancyDiffusion = prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
||||||
VacancyDiffusion = &
|
|
||||||
prm%D0*exp(-prm%Qsd/(kB*Temperature))
|
|
||||||
if (dEq0(tau_slip(j))) then
|
if (dEq0(tau_slip(j))) then
|
||||||
DotRhoEdgeDipClimb = 0.0_pReal
|
DotRhoEdgeDipClimb = 0.0_pReal
|
||||||
else
|
else
|
||||||
|
@ -1554,27 +1537,14 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
||||||
(EdgeDipDistance-EdgeDipMinDistance)
|
(EdgeDipDistance-EdgeDipMinDistance)
|
||||||
endif
|
endif
|
||||||
endif
|
endif
|
||||||
!* Edge dislocation density rate of change
|
|
||||||
dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
dotState(instance)%rhoEdge(j,of) = DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||||||
|
|
||||||
!* Edge dislocation dipole density rate of change
|
|
||||||
dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
dotState(instance)%rhoEdgeDip(j,of) = DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||||||
|
|
||||||
!* Dotstate for accumulated shear due to slip
|
|
||||||
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||||||
|
|
||||||
enddo slipSystems
|
enddo slipSystems
|
||||||
|
|
||||||
!* Twin volume fraction evolution
|
twinSystems: do j = 1_pInt, prm%totalNtwin
|
||||||
j = 0_pInt
|
|
||||||
do f = 1_pInt,size(prm%Ntwin,1)
|
|
||||||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
|
||||||
do i = 1_pInt,prm%Ntwin(f) ! process each (active) twin system in family
|
|
||||||
j = j+1_pInt
|
|
||||||
|
|
||||||
!* Resolved shear stress on twin system
|
|
||||||
tau_twin(j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
tau_twin(j) = math_mul33xx33(S,prm%Schmid_slip(1:3,1:3,j))
|
||||||
!* Stress ratios
|
|
||||||
if (tau_twin(j) > tol_math_check) then
|
if (tau_twin(j) > tol_math_check) then
|
||||||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/&
|
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/&
|
||||||
tau_twin(j))**prm%r(j)
|
tau_twin(j))**prm%r(j)
|
||||||
|
@ -1596,22 +1566,18 @@ subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
||||||
dotState(instance)%twinFraction(j,of) = &
|
dotState(instance)%twinFraction(j,of) = &
|
||||||
(1.0_pReal-sumf-sumftr)*&
|
(1.0_pReal-sumf-sumftr)*&
|
||||||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||||||
!* Dotstate for accumulated shear due to twin
|
|
||||||
dotState(instance)%accshear_twin(j,of) = dotState(instance)%twinFraction(j,of) * &
|
dotState(instance)%accshear_twin(j,of) = dotState(instance)%twinFraction(j,of) * &
|
||||||
lattice_sheartwin(index_myfamily+i,ph)
|
prm%shear_twin(j)
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo twinSystems
|
||||||
enddo
|
|
||||||
|
|
||||||
transSystems: do j = 1_pInt, prm%totalNtrans
|
transSystems: do j = 1_pInt, prm%totalNtrans
|
||||||
|
|
||||||
tau_trans(j) = math_mul33xx33(S,lattice_Strans(1:3,1:3,index_myFamily+i,ph))
|
tau_trans(j) = math_mul33xx33(S,prm%Schmid_trans(1:3,1:3,j))
|
||||||
|
|
||||||
!* Stress ratios
|
|
||||||
if (tau_trans(j) > tol_math_check) then
|
if (tau_trans(j) > tol_math_check) then
|
||||||
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/&
|
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/&
|
||||||
tau_trans(j))**prm%s(f)
|
tau_trans(j))**prm%s(f)
|
||||||
!* Shear rates and their derivatives due to transformation
|
|
||||||
if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
if (lattice_structure(ph) == LATTICE_FCC_ID) then
|
||||||
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
s1=prm%fcc_twinNucleationSlipPair(1,j)
|
||||||
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
s2=prm%fcc_twinNucleationSlipPair(2,j)
|
||||||
|
|
Loading…
Reference in New Issue