Merge branch 'integrate-lambert' into 'development'
Integrate lambert See merge request damask/DAMASK!166
This commit is contained in:
commit
90f93d2399
|
@ -1,164 +0,0 @@
|
|||
####################################################################################################
|
||||
# Code below available according to the following conditions on
|
||||
# https://github.com/MarDiehl/3Drotations
|
||||
####################################################################################################
|
||||
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are
|
||||
# permitted provided that the following conditions are met:
|
||||
#
|
||||
# - Redistributions of source code must retain the above copyright notice, this list
|
||||
# of conditions and the following disclaimer.
|
||||
# - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
# list of conditions and the following disclaimer in the documentation and/or
|
||||
# other materials provided with the distribution.
|
||||
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
# of its contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
####################################################################################################
|
||||
|
||||
import numpy as np
|
||||
|
||||
sc = np.pi**(1./6.)/6.**(1./6.)
|
||||
beta = np.pi**(5./6.)/6.**(1./6.)/2.
|
||||
R1 = (3.*np.pi/4.)**(1./3.)
|
||||
|
||||
def cube_to_ball(cube):
|
||||
"""
|
||||
Map a point in a uniform refinable cubical grid to a point on a uniform refinable grid on a ball.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cube : numpy.ndarray
|
||||
coordinates of a point in a uniform refinable cubical grid.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
cube_ = np.clip(cube,None,np.pi**(2./3.) * 0.5) if np.isclose(np.abs(np.max(cube)),np.pi**(2./3.) * 0.5,atol=1e-6) else cube
|
||||
|
||||
# transform to the sphere grid via the curved square, and intercept the zero point
|
||||
if np.allclose(cube_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.zeros(3)
|
||||
else:
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
p = _get_order(cube_)
|
||||
XYZ = cube_[p[0]] * sc
|
||||
|
||||
# intercept all the points along the z-axis
|
||||
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
else:
|
||||
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
||||
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
||||
c = np.cos(q)
|
||||
s = np.sin(q)
|
||||
q = R1*2.0**0.25/beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
|
||||
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
||||
|
||||
# transform to sphere grid (inverse Lambert)
|
||||
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
|
||||
c = np.sum(T**2)
|
||||
s = c * np.pi/24.0 /XYZ[2]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
||||
q = np.sqrt( 1.0 - s )
|
||||
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
ball = ball[p[1]]
|
||||
|
||||
return ball
|
||||
|
||||
|
||||
def ball_to_cube(ball):
|
||||
"""
|
||||
Map a point on a uniform refinable grid on a ball to a point in a uniform refinable cubical grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ball : numpy.ndarray
|
||||
coordinates of a point on a uniform refinable grid on a ball.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
ball_ = ball/np.linalg.norm(ball)*R1 if np.isclose(np.linalg.norm(ball),R1,atol=1e-6) else ball
|
||||
rs = np.linalg.norm(ball_)
|
||||
|
||||
if np.allclose(ball_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
cube = np.zeros(3)
|
||||
else:
|
||||
p = _get_order(ball_)
|
||||
xyz3 = ball_[p[0]]
|
||||
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
||||
|
||||
# inverse M_2
|
||||
qxy = np.sum(xyz2**2)
|
||||
|
||||
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-16):
|
||||
Tinv = np.zeros(2)
|
||||
else:
|
||||
q2 = qxy + np.max(np.abs(xyz2))**2
|
||||
sq2 = np.sqrt(q2)
|
||||
q = (beta/np.sqrt(2.0)/R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
|
||||
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
||||
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
|
||||
np.array([np.arccos(tt)/np.pi*12.0,1.0])
|
||||
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
||||
|
||||
# inverse M_1
|
||||
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /sc
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
cube = cube[p[1]]
|
||||
|
||||
return cube
|
||||
|
||||
|
||||
def _get_order(xyz):
|
||||
"""
|
||||
Get order of the coordinates.
|
||||
|
||||
Depending on the pyramid in which the point is located, the order need to be adjusted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xyz : numpy.ndarray
|
||||
coordinates of a point on a uniform refinable grid on a ball or
|
||||
in a uniform refinable cubical grid.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
if (abs(xyz[0])<= xyz[2]) and (abs(xyz[1])<= xyz[2]) or \
|
||||
(abs(xyz[0])<=-xyz[2]) and (abs(xyz[1])<=-xyz[2]):
|
||||
return [[0,1,2],[0,1,2]]
|
||||
elif (abs(xyz[2])<= xyz[0]) and (abs(xyz[1])<= xyz[0]) or \
|
||||
(abs(xyz[2])<=-xyz[0]) and (abs(xyz[1])<=-xyz[0]):
|
||||
return [[1,2,0],[2,0,1]]
|
||||
elif (abs(xyz[0])<= xyz[1]) and (abs(xyz[2])<= xyz[1]) or \
|
||||
(abs(xyz[0])<=-xyz[1]) and (abs(xyz[2])<=-xyz[1]):
|
||||
return [[2,0,1],[1,2,0]]
|
|
@ -1,10 +1,14 @@
|
|||
import numpy as np
|
||||
|
||||
from ._Lambert import ball_to_cube, cube_to_ball
|
||||
from . import mechanics
|
||||
|
||||
_P = -1
|
||||
|
||||
# parameters for conversion from/to cubochoric
|
||||
_sc = np.pi**(1./6.)/6.**(1./6.)
|
||||
_beta = np.pi**(5./6.)/6.**(1./6.)/2.
|
||||
_R1 = (3.*np.pi/4.)**(1./3.)
|
||||
|
||||
def iszero(a):
|
||||
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
|
||||
|
||||
|
@ -237,7 +241,7 @@ class Rotation:
|
|||
"""Homochoric vector: (h_1, h_2, h_3)."""
|
||||
return Rotation.qu2ho(self.quaternion)
|
||||
|
||||
def asCubochoric(self):
|
||||
def as_cubochoric(self):
|
||||
"""Cubochoric vector: (c_1, c_2, c_3)."""
|
||||
return Rotation.qu2cu(self.quaternion)
|
||||
|
||||
|
@ -261,6 +265,7 @@ class Rotation:
|
|||
asMatrix = as_matrix
|
||||
asRodrigues = as_Rodrigues
|
||||
asHomochoric = as_homochoric
|
||||
asCubochoric = as_cubochoric
|
||||
|
||||
################################################################################################
|
||||
# Static constructors. The input data needs to follow the conventions, options allow to
|
||||
|
@ -382,7 +387,7 @@ class Rotation:
|
|||
return Rotation(Rotation.ho2qu(ho))
|
||||
|
||||
@staticmethod
|
||||
def fromCubochoric(cubochoric,
|
||||
def from_cubochoric(cubochoric,
|
||||
P = -1):
|
||||
|
||||
cu = np.array(cubochoric,dtype=float)
|
||||
|
@ -457,6 +462,7 @@ class Rotation:
|
|||
fromMatrix = from_matrix
|
||||
fromRodrigues = from_Rodrigues
|
||||
fromHomochoric = from_homochoric
|
||||
fromCubochoric = from_cubochoric
|
||||
fromRandom = from_random
|
||||
|
||||
####################################################################################################
|
||||
|
@ -1047,12 +1053,71 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def ho2cu(ho):
|
||||
"""Homochoric vector to cubochoric vector."""
|
||||
if len(ho.shape) == 1:
|
||||
return ball_to_cube(ho)
|
||||
else:
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
"""
|
||||
Homochoric vector to cubochoric vector.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
if len(ho.shape) == 1:
|
||||
rs = np.linalg.norm(ho)
|
||||
|
||||
if np.allclose(ho,0.0,rtol=0.0,atol=1.0e-16):
|
||||
cu = np.zeros(3)
|
||||
else:
|
||||
xyz3 = ho[Rotation._get_pyramid_order(ho,'forward')]
|
||||
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
||||
|
||||
# inverse M_2
|
||||
qxy = np.sum(xyz2**2)
|
||||
|
||||
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-16):
|
||||
Tinv = np.zeros(2)
|
||||
else:
|
||||
q2 = qxy + np.max(np.abs(xyz2))**2
|
||||
sq2 = np.sqrt(q2)
|
||||
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
|
||||
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
||||
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
|
||||
np.array([np.arccos(tt)/np.pi*12.0,1.0])
|
||||
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
||||
|
||||
# inverse M_1
|
||||
cu = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
|
||||
cu = cu[Rotation._get_pyramid_order(ho,'backward')]
|
||||
else:
|
||||
rs = np.linalg.norm(ho,axis=-1,keepdims=True)
|
||||
|
||||
xyz3 = np.take_along_axis(ho,Rotation._get_pyramid_order(ho,'forward'),-1)
|
||||
|
||||
with np.errstate(invalid='ignore',divide='ignore'):
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[...,0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[...,2:3])) )
|
||||
qxy = np.sum(xyz2**2,axis=-1,keepdims=True)
|
||||
|
||||
q2 = qxy + np.max(np.abs(xyz2),axis=-1,keepdims=True)**2
|
||||
sq2 = np.sqrt(q2)
|
||||
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2))
|
||||
tt = np.clip((np.min(np.abs(xyz2),axis=-1,keepdims=True)**2\
|
||||
+np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
||||
T_inv = np.where(np.abs(xyz2[...,1:2]) <= np.abs(xyz2[...,0:1]),
|
||||
np.block([np.ones_like(tt),np.arccos(tt)/np.pi*12.0]),
|
||||
np.block([np.arccos(tt)/np.pi*12.0,np.ones_like(tt)]))*q
|
||||
T_inv[xyz2<0.0] *= -1.0
|
||||
T_inv[np.broadcast_to(np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-12),T_inv.shape)] = 0.0
|
||||
cu = np.block([T_inv, np.where(xyz3[...,2:3]<0.0,-np.ones_like(xyz3[...,2:3]),np.ones_like(xyz3[...,2:3])) \
|
||||
* rs/np.sqrt(6.0/np.pi),
|
||||
])/ _sc
|
||||
|
||||
cu[np.isclose(np.sum(np.abs(ho),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
|
||||
cu = np.take_along_axis(cu,Rotation._get_pyramid_order(ho,'backward'),-1)
|
||||
|
||||
return cu
|
||||
|
||||
#---------- Cubochoric ----------
|
||||
@staticmethod
|
||||
|
@ -1082,8 +1147,110 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def cu2ho(cu):
|
||||
"""Cubochoric vector to homochoric vector."""
|
||||
"""
|
||||
Cubochoric vector to homochoric vector.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
if len(cu.shape) == 1:
|
||||
return cube_to_ball(cu)
|
||||
# transform to the sphere grid via the curved square, and intercept the zero point
|
||||
if np.allclose(cu,0.0,rtol=0.0,atol=1.0e-16):
|
||||
ho = np.zeros(3)
|
||||
else:
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
XYZ = cu[Rotation._get_pyramid_order(cu,'forward')] * _sc
|
||||
|
||||
# intercept all the points along the z-axis
|
||||
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
|
||||
ho = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
else:
|
||||
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
||||
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
||||
c = np.cos(q)
|
||||
s = np.sin(q)
|
||||
q = _R1*2.0**0.25/_beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
|
||||
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
||||
|
||||
# transform to sphere grid (inverse Lambert)
|
||||
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
|
||||
c = np.sum(T**2)
|
||||
s = c * np.pi/24.0 /XYZ[2]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
||||
|
||||
q = np.sqrt( 1.0 - s )
|
||||
ho = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
|
||||
ho = ho[Rotation._get_pyramid_order(cu,'backward')]
|
||||
else:
|
||||
raise NotImplementedError('Support for multiple rotations missing')
|
||||
with np.errstate(invalid='ignore',divide='ignore'):
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
XYZ = np.take_along_axis(cu,Rotation._get_pyramid_order(cu,'forward'),-1) * _sc
|
||||
order = np.abs(XYZ[...,1:2]) <= np.abs(XYZ[...,0:1])
|
||||
q = np.pi/12.0 * np.where(order,XYZ[...,1:2],XYZ[...,0:1]) \
|
||||
/ np.where(order,XYZ[...,0:1],XYZ[...,1:2])
|
||||
c = np.cos(q)
|
||||
s = np.sin(q)
|
||||
q = _R1*2.0**0.25/_beta/ np.sqrt(np.sqrt(2.0)-c) \
|
||||
* np.where(order,XYZ[...,0:1],XYZ[...,1:2])
|
||||
|
||||
T = np.block([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
||||
|
||||
# transform to sphere grid (inverse Lambert)
|
||||
c = np.sum(T**2,axis=-1,keepdims=True)
|
||||
s = c * np.pi/24.0 /XYZ[...,2:3]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[...,2:3]
|
||||
q = np.sqrt( 1.0 - s)
|
||||
|
||||
ho = np.where(np.isclose(np.sum(np.abs(XYZ[...,0:2]),axis=-1,keepdims=True),0.0,rtol=0.0,atol=1.0e-16),
|
||||
np.block([np.zeros_like(XYZ[...,0:2]),np.sqrt(6.0/np.pi) *XYZ[...,2:3]]),
|
||||
np.block([np.where(order,T[...,0:1],T[...,1:2])*q,
|
||||
np.where(order,T[...,1:2],T[...,0:1])*q,
|
||||
np.sqrt(6.0/np.pi) * XYZ[...,2:3] - c])
|
||||
)
|
||||
|
||||
ho[np.isclose(np.sum(np.abs(cu),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
|
||||
ho = np.take_along_axis(ho,Rotation._get_pyramid_order(cu,'backward'),-1)
|
||||
|
||||
return ho
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _get_pyramid_order(xyz,direction=None):
|
||||
"""
|
||||
Get order of the coordinates.
|
||||
|
||||
Depending on the pyramid in which the point is located, the order need to be adjusted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xyz : numpy.ndarray
|
||||
coordinates of a point on a uniform refinable grid on a ball or
|
||||
in a uniform refinable cubical grid.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
order = {'forward':np.array([[0,1,2],[1,2,0],[2,0,1]]),
|
||||
'backward':np.array([[0,1,2],[2,0,1],[1,2,0]])}
|
||||
if len(xyz.shape) == 1:
|
||||
if np.maximum(abs(xyz[0]),abs(xyz[1])) <= xyz[2] or \
|
||||
np.maximum(abs(xyz[0]),abs(xyz[1])) <=-xyz[2]:
|
||||
p = 0
|
||||
elif np.maximum(abs(xyz[1]),abs(xyz[2])) <= xyz[0] or \
|
||||
np.maximum(abs(xyz[1]),abs(xyz[2])) <=-xyz[0]:
|
||||
p = 1
|
||||
elif np.maximum(abs(xyz[2]),abs(xyz[0])) <= xyz[1] or \
|
||||
np.maximum(abs(xyz[2]),abs(xyz[0])) <=-xyz[1]:
|
||||
p = 2
|
||||
else:
|
||||
p = np.where(np.maximum(np.abs(xyz[...,0]),np.abs(xyz[...,1])) <= np.abs(xyz[...,2]),0,
|
||||
np.where(np.maximum(np.abs(xyz[...,1]),np.abs(xyz[...,2])) <= np.abs(xyz[...,0]),1,2))
|
||||
|
||||
return order[direction][p]
|
||||
|
|
|
@ -78,9 +78,9 @@ def default():
|
|||
specials_scatter /= np.linalg.norm(specials_scatter,axis=1).reshape(-1,1)
|
||||
specials_scatter[specials_scatter[:,0]<0]*=-1
|
||||
|
||||
return [Rotation.fromQuaternion(s) for s in specials] + \
|
||||
[Rotation.fromQuaternion(s) for s in specials_scatter] + \
|
||||
[Rotation.fromRandom() for _ in range(n-len(specials)-len(specials_scatter))]
|
||||
return [Rotation.from_quaternion(s) for s in specials] + \
|
||||
[Rotation.from_quaternion(s) for s in specials_scatter] + \
|
||||
[Rotation.from_random() for _ in range(n-len(specials)-len(specials_scatter))]
|
||||
|
||||
@pytest.fixture
|
||||
def reference_dir(reference_dir_base):
|
||||
|
@ -92,41 +92,41 @@ class TestRotation:
|
|||
|
||||
def test_Eulers(self,default):
|
||||
for rot in default:
|
||||
m = rot.asQuaternion()
|
||||
o = Rotation.fromEulers(rot.asEulers()).asQuaternion()
|
||||
m = rot.as_quaternion()
|
||||
o = Rotation.from_Eulers(rot.as_Eulers()).as_quaternion()
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
if np.isclose(rot.asQuaternion()[0],0.0,atol=atol):
|
||||
if np.isclose(rot.as_quaternion()[0],0.0,atol=atol):
|
||||
ok = ok or np.allclose(m*-1.,o,atol=atol)
|
||||
print(m,o,rot.asQuaternion())
|
||||
print(m,o,rot.as_quaternion())
|
||||
assert ok and np.isclose(np.linalg.norm(o),1.0)
|
||||
|
||||
def test_AxisAngle(self,default):
|
||||
for rot in default:
|
||||
m = rot.asEulers()
|
||||
o = Rotation.fromAxisAngle(rot.asAxisAngle()).asEulers()
|
||||
m = rot.as_Eulers()
|
||||
o = Rotation.from_axis_angle(rot.as_axis_angle()).as_Eulers()
|
||||
u = np.array([np.pi*2,np.pi,np.pi*2])
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
|
||||
if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol):
|
||||
sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]])
|
||||
ok = ok or np.isclose(sum_phi[0],sum_phi[1],atol=atol)
|
||||
print(m,o,rot.asQuaternion())
|
||||
print(m,o,rot.as_quaternion())
|
||||
assert ok and (np.zeros(3)-1.e-9 <= o).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all()
|
||||
|
||||
def test_Matrix(self,default):
|
||||
for rot in default:
|
||||
m = rot.asAxisAngle()
|
||||
o = Rotation.fromAxisAngle(rot.asAxisAngle()).asAxisAngle()
|
||||
m = rot.as_axis_angle()
|
||||
o = Rotation.from_axis_angle(rot.as_axis_angle()).as_axis_angle()
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
if np.isclose(m[3],np.pi,atol=atol):
|
||||
ok = ok or np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol)
|
||||
print(m,o,rot.asQuaternion())
|
||||
print(m,o,rot.as_quaternion())
|
||||
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi++1.e-9
|
||||
|
||||
def test_Rodrigues(self,default):
|
||||
for rot in default:
|
||||
m = rot.asMatrix()
|
||||
o = Rotation.fromRodrigues(rot.asRodrigues()).asMatrix()
|
||||
m = rot.as_matrix()
|
||||
o = Rotation.from_Rodrigues(rot.as_Rodrigues()).as_matrix()
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
print(m,o)
|
||||
assert ok and np.isclose(np.linalg.det(o),1.0)
|
||||
|
@ -134,27 +134,27 @@ class TestRotation:
|
|||
def test_Homochoric(self,default):
|
||||
cutoff = np.tan(np.pi*.5*(1.-1e-4))
|
||||
for rot in default:
|
||||
m = rot.asRodrigues()
|
||||
o = Rotation.fromHomochoric(rot.asHomochoric()).asRodrigues()
|
||||
m = rot.as_Rodrigues()
|
||||
o = Rotation.from_homochoric(rot.as_homochoric()).as_Rodrigues()
|
||||
ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol)
|
||||
ok = ok or np.isclose(m[3],0.0,atol=atol)
|
||||
print(m,o,rot.asQuaternion())
|
||||
print(m,o,rot.as_quaternion())
|
||||
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0)
|
||||
|
||||
def test_Cubochoric(self,default):
|
||||
for rot in default:
|
||||
m = rot.asHomochoric()
|
||||
o = Rotation.fromCubochoric(rot.asCubochoric()).asHomochoric()
|
||||
m = rot.as_homochoric()
|
||||
o = Rotation.from_cubochoric(rot.as_cubochoric()).as_homochoric()
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
print(m,o,rot.asQuaternion())
|
||||
print(m,o,rot.as_quaternion())
|
||||
assert ok and np.linalg.norm(o) < (3.*np.pi/4.)**(1./3.) + 1.e-9
|
||||
|
||||
def test_Quaternion(self,default):
|
||||
for rot in default:
|
||||
m = rot.asCubochoric()
|
||||
o = Rotation.fromQuaternion(rot.asQuaternion()).asCubochoric()
|
||||
m = rot.as_cubochoric()
|
||||
o = Rotation.from_quaternion(rot.as_quaternion()).as_cubochoric()
|
||||
ok = np.allclose(m,o,atol=atol)
|
||||
print(m,o,rot.asQuaternion())
|
||||
print(m,o,rot.as_quaternion())
|
||||
assert ok and o.max() < np.pi**(2./3.)*0.5+1.e-9
|
||||
|
||||
@pytest.mark.parametrize('function',[Rotation.from_quaternion,
|
||||
|
@ -185,9 +185,11 @@ class TestRotation:
|
|||
Rotation.qu2eu,
|
||||
Rotation.qu2ax,
|
||||
Rotation.qu2ro,
|
||||
Rotation.qu2ho])
|
||||
Rotation.qu2ho,
|
||||
Rotation.qu2cu
|
||||
])
|
||||
def test_quaternion_vectorization(self,default,conversion):
|
||||
qu = np.array([rot.asQuaternion() for rot in default])
|
||||
qu = np.array([rot.as_quaternion() for rot in default])
|
||||
conversion(qu.reshape(qu.shape[0]//2,-1,4))
|
||||
co = conversion(qu)
|
||||
for q,c in zip(qu,co):
|
||||
|
@ -199,9 +201,10 @@ class TestRotation:
|
|||
Rotation.om2ax,
|
||||
Rotation.om2ro,
|
||||
Rotation.om2ho,
|
||||
Rotation.om2cu
|
||||
])
|
||||
def test_matrix_vectorization(self,default,conversion):
|
||||
om = np.array([rot.asMatrix() for rot in default])
|
||||
om = np.array([rot.as_matrix() for rot in default])
|
||||
conversion(om.reshape(om.shape[0]//2,-1,3,3))
|
||||
co = conversion(om)
|
||||
for o,c in zip(om,co):
|
||||
|
@ -213,9 +216,10 @@ class TestRotation:
|
|||
Rotation.eu2ax,
|
||||
Rotation.eu2ro,
|
||||
Rotation.eu2ho,
|
||||
Rotation.eu2cu
|
||||
])
|
||||
def test_Euler_vectorization(self,default,conversion):
|
||||
eu = np.array([rot.asEulers() for rot in default])
|
||||
eu = np.array([rot.as_Eulers() for rot in default])
|
||||
conversion(eu.reshape(eu.shape[0]//2,-1,3))
|
||||
co = conversion(eu)
|
||||
for e,c in zip(eu,co):
|
||||
|
@ -227,9 +231,10 @@ class TestRotation:
|
|||
Rotation.ax2eu,
|
||||
Rotation.ax2ro,
|
||||
Rotation.ax2ho,
|
||||
Rotation.ax2cu
|
||||
])
|
||||
def test_axisAngle_vectorization(self,default,conversion):
|
||||
ax = np.array([rot.asAxisAngle() for rot in default])
|
||||
ax = np.array([rot.as_axis_angle() for rot in default])
|
||||
conversion(ax.reshape(ax.shape[0]//2,-1,4))
|
||||
co = conversion(ax)
|
||||
for a,c in zip(ax,co):
|
||||
|
@ -242,9 +247,10 @@ class TestRotation:
|
|||
Rotation.ro2eu,
|
||||
Rotation.ro2ax,
|
||||
Rotation.ro2ho,
|
||||
Rotation.ro2cu
|
||||
])
|
||||
def test_Rodrigues_vectorization(self,default,conversion):
|
||||
ro = np.array([rot.asRodrigues() for rot in default])
|
||||
ro = np.array([rot.as_Rodrigues() for rot in default])
|
||||
conversion(ro.reshape(ro.shape[0]//2,-1,4))
|
||||
co = conversion(ro)
|
||||
for r,c in zip(ro,co):
|
||||
|
@ -256,11 +262,41 @@ class TestRotation:
|
|||
Rotation.ho2eu,
|
||||
Rotation.ho2ax,
|
||||
Rotation.ho2ro,
|
||||
Rotation.ho2cu
|
||||
])
|
||||
def test_homochoric_vectorization(self,default,conversion):
|
||||
ho = np.array([rot.asHomochoric() for rot in default])
|
||||
ho = np.array([rot.as_homochoric() for rot in default])
|
||||
conversion(ho.reshape(ho.shape[0]//2,-1,3))
|
||||
co = conversion(ho)
|
||||
for h,c in zip(ho,co):
|
||||
print(h,c)
|
||||
assert np.allclose(conversion(h),c)
|
||||
|
||||
@pytest.mark.parametrize('conversion',[Rotation.cu2qu,
|
||||
Rotation.cu2om,
|
||||
Rotation.cu2eu,
|
||||
Rotation.cu2ax,
|
||||
Rotation.cu2ro,
|
||||
Rotation.cu2ho
|
||||
])
|
||||
def test_cubochoric_vectorization(self,default,conversion):
|
||||
cu = np.array([rot.as_cubochoric() for rot in default])
|
||||
conversion(cu.reshape(cu.shape[0]//2,-1,3))
|
||||
co = conversion(cu)
|
||||
for u,c in zip(cu,co):
|
||||
print(u,c)
|
||||
assert np.allclose(conversion(u),c)
|
||||
|
||||
@pytest.mark.parametrize('direction',['forward',
|
||||
'backward'])
|
||||
def test_pyramid_vectorization(self,direction):
|
||||
p = np.random.rand(n,3)
|
||||
o = Rotation._get_pyramid_order(p,direction)
|
||||
for i,o_i in enumerate(o):
|
||||
assert np.all(o_i==Rotation._get_pyramid_order(p[i],direction))
|
||||
|
||||
def test_pyramid_invariant(self):
|
||||
a = np.random.rand(n,3)
|
||||
f = Rotation._get_pyramid_order(a,'forward')
|
||||
b = Rotation._get_pyramid_order(a,'backward')
|
||||
assert np.all(np.take_along_axis(np.take_along_axis(a,f,-1),b,-1) == a)
|
||||
|
|
201
src/Lambert.f90
201
src/Lambert.f90
|
@ -1,201 +0,0 @@
|
|||
! ###################################################################
|
||||
! Copyright (c) 2013-2015, Marc De Graef/Carnegie Mellon University
|
||||
! Modified 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||
! All rights reserved.
|
||||
!
|
||||
! Redistribution and use in source and binary forms, with or without modification, are
|
||||
! permitted provided that the following conditions are met:
|
||||
!
|
||||
! - Redistributions of source code must retain the above copyright notice, this list
|
||||
! of conditions and the following disclaimer.
|
||||
! - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
! list of conditions and the following disclaimer in the documentation and/or
|
||||
! other materials provided with the distribution.
|
||||
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
! of its contributors may be used to endorse or promote products derived from
|
||||
! this software without specific prior written permission.
|
||||
!
|
||||
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
! ###################################################################
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief Mapping homochoric <-> cubochoric
|
||||
!
|
||||
!> @details
|
||||
!> D. Rosca, A. Morawiec, and M. De Graef. “A new method of constructing a grid
|
||||
!> in the space of 3D rotations and its applications to texture analysis”.
|
||||
!> Modeling and Simulations in Materials Science and Engineering 22, 075013 (2014).
|
||||
!--------------------------------------------------------------------------
|
||||
module Lambert
|
||||
use prec
|
||||
use math
|
||||
|
||||
implicit none
|
||||
private
|
||||
|
||||
real(pReal), parameter :: &
|
||||
SPI = sqrt(PI), &
|
||||
PREF = sqrt(6.0_pReal/PI), &
|
||||
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
|
||||
AP = PI**(2.0_pReal/3.0_pReal), &
|
||||
SC = A/AP, &
|
||||
BETA = A/2.0_pReal, &
|
||||
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
|
||||
R2 = sqrt(2.0_pReal), &
|
||||
PI12 = PI/12.0_pReal, &
|
||||
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
|
||||
|
||||
public :: &
|
||||
Lambert_CubeToBall, &
|
||||
Lambert_BallToCube
|
||||
|
||||
contains
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief map from 3D cubic grid to 3D ball
|
||||
!--------------------------------------------------------------------------
|
||||
pure function Lambert_CubeToBall(cube) result(ball)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: cube
|
||||
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
|
||||
real(pReal), dimension(2) :: T
|
||||
real(pReal) :: c, s, q
|
||||
real(pReal), parameter :: eps = 1.0e-8_pReal
|
||||
integer, dimension(3,2) :: p
|
||||
integer, dimension(2) :: order
|
||||
|
||||
if (maxval(abs(cube)) > AP/2.0+eps) then
|
||||
ball = IEEE_value(cube,IEEE_positive_inf)
|
||||
return
|
||||
end if
|
||||
|
||||
! transform to the sphere grid via the curved square, and intercept the zero point
|
||||
center: if (all(dEq0(cube))) then
|
||||
ball = 0.0_pReal
|
||||
else center
|
||||
! get pyramide and scale by grid parameter ratio
|
||||
p = GetPyramidOrder(cube)
|
||||
XYZ = cube(p(:,1)) * sc
|
||||
|
||||
! intercept all the points along the z-axis
|
||||
special: if (all(dEq0(XYZ(1:2)))) then
|
||||
LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ]
|
||||
else special
|
||||
order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ
|
||||
q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
|
||||
c = cos(q)
|
||||
s = sin(q)
|
||||
q = prek * XYZ(order(2))/ sqrt(R2-c)
|
||||
T = [ (R2*c - 1.0), R2 * s] * q
|
||||
|
||||
! transform to sphere grid (inverse Lambert)
|
||||
! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
|
||||
c = sum(T**2)
|
||||
s = Pi * c/(24.0*XYZ(3)**2)
|
||||
c = sPi * c / sqrt(24.0_pReal) / XYZ(3)
|
||||
q = sqrt( 1.0 - s )
|
||||
LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ]
|
||||
endif special
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
ball = LamXYZ(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
end function Lambert_CubeToBall
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief map from 3D ball to 3D cubic grid
|
||||
!--------------------------------------------------------------------------
|
||||
pure function Lambert_BallToCube(xyz) result(cube)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: xyz
|
||||
real(pReal), dimension(3) :: cube, xyz1, xyz3
|
||||
real(pReal), dimension(2) :: Tinv, xyz2
|
||||
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
||||
integer, dimension(3,2) :: p
|
||||
|
||||
rs = norm2(xyz)
|
||||
if (rs > R1) then
|
||||
cube = IEEE_value(cube,IEEE_positive_inf)
|
||||
return
|
||||
endif
|
||||
|
||||
center: if (all(dEq0(xyz))) then
|
||||
cube = 0.0_pReal
|
||||
else center
|
||||
p = GetPyramidOrder(xyz)
|
||||
xyz3 = xyz(p(:,1))
|
||||
|
||||
! inverse M_3
|
||||
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
||||
|
||||
! inverse M_2
|
||||
qxy = sum(xyz2**2)
|
||||
|
||||
special: if (dEq0(qxy)) then
|
||||
Tinv = 0.0_pReal
|
||||
else special
|
||||
q2 = qxy + maxval(abs(xyz2))**2
|
||||
sq2 = sqrt(q2)
|
||||
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
||||
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
||||
Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
||||
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
||||
abs(xyz2(2)) <= abs(xyz2(1)))
|
||||
endif special
|
||||
|
||||
! inverse M_1
|
||||
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
cube = xyz1(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
end function Lambert_BallToCube
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief determine to which pyramid a point in a cubic grid belongs
|
||||
!--------------------------------------------------------------------------
|
||||
pure function GetPyramidOrder(xyz)
|
||||
|
||||
real(pReal),intent(in),dimension(3) :: xyz
|
||||
integer, dimension(3,2) :: GetPyramidOrder
|
||||
|
||||
if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. &
|
||||
((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then
|
||||
GetPyramidOrder = reshape([[1,2,3],[1,2,3]],[3,2])
|
||||
else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. &
|
||||
((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then
|
||||
GetPyramidOrder = reshape([[2,3,1],[3,1,2]],[3,2])
|
||||
else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. &
|
||||
((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then
|
||||
GetPyramidOrder = reshape([[3,1,2],[2,3,1]],[3,2])
|
||||
else
|
||||
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
|
||||
end if
|
||||
|
||||
end function GetPyramidOrder
|
||||
|
||||
end module Lambert
|
|
@ -13,7 +13,6 @@
|
|||
#include "LAPACK_interface.f90"
|
||||
#include "math.f90"
|
||||
#include "quaternions.f90"
|
||||
#include "Lambert.f90"
|
||||
#include "rotations.f90"
|
||||
#include "FEsolving.f90"
|
||||
#include "element.f90"
|
||||
|
|
|
@ -3,27 +3,27 @@
|
|||
! Modified 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||
! All rights reserved.
|
||||
!
|
||||
! Redistribution and use in source and binary forms, with or without modification, are
|
||||
! Redistribution and use in source and binary forms, with or without modification, are
|
||||
! permitted provided that the following conditions are met:
|
||||
!
|
||||
! - Redistributions of source code must retain the above copyright notice, this list
|
||||
! - Redistributions of source code must retain the above copyright notice, this list
|
||||
! of conditions and the following disclaimer.
|
||||
! - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
! list of conditions and the following disclaimer in the documentation and/or
|
||||
! - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
! list of conditions and the following disclaimer in the documentation and/or
|
||||
! other materials provided with the distribution.
|
||||
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
! of its contributors may be used to endorse or promote products derived from
|
||||
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
! of its contributors may be used to endorse or promote products derived from
|
||||
! this software without specific prior written permission.
|
||||
!
|
||||
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
! ###################################################################
|
||||
|
||||
|
@ -31,7 +31,7 @@
|
|||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief rotation storage and conversion
|
||||
!> @details: rotation is internally stored as quaternion. It can be inialized from different
|
||||
!> @details: rotation is internally stored as quaternion. It can be inialized from different
|
||||
!> representations and also returns itself in different representations.
|
||||
!
|
||||
! All methods and naming conventions based on Rowenhorst_etal2015
|
||||
|
@ -50,9 +50,8 @@ module rotations
|
|||
use prec
|
||||
use IO
|
||||
use math
|
||||
use Lambert
|
||||
use quaternions
|
||||
|
||||
|
||||
implicit none
|
||||
private
|
||||
|
||||
|
@ -80,7 +79,19 @@ module rotations
|
|||
procedure, public :: misorientation
|
||||
procedure, public :: standardize
|
||||
end type rotation
|
||||
|
||||
|
||||
real(pReal), parameter :: &
|
||||
SPI = sqrt(PI), &
|
||||
PREF = sqrt(6.0_pReal/PI), &
|
||||
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
|
||||
AP = PI**(2.0_pReal/3.0_pReal), &
|
||||
SC = A/AP, &
|
||||
BETA = A/2.0_pReal, &
|
||||
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
|
||||
R2 = sqrt(2.0_pReal), &
|
||||
PI12 = PI/12.0_pReal, &
|
||||
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
|
||||
|
||||
public :: &
|
||||
rotations_init, &
|
||||
eu2om
|
||||
|
@ -106,16 +117,16 @@ pure function asQuaternion(self)
|
|||
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(4) :: asQuaternion
|
||||
|
||||
|
||||
asQuaternion = self%q%asArray()
|
||||
|
||||
end function asQuaternion
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function asEulers(self)
|
||||
|
||||
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(3) :: asEulers
|
||||
|
||||
|
||||
asEulers = qu2eu(self%q%asArray())
|
||||
|
||||
end function asEulers
|
||||
|
@ -124,16 +135,16 @@ pure function asAxisAngle(self)
|
|||
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(4) :: asAxisAngle
|
||||
|
||||
|
||||
asAxisAngle = qu2ax(self%q%asArray())
|
||||
|
||||
end function asAxisAngle
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function asMatrix(self)
|
||||
|
||||
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(3,3) :: asMatrix
|
||||
|
||||
|
||||
asMatrix = qu2om(self%q%asArray())
|
||||
|
||||
end function asMatrix
|
||||
|
@ -142,20 +153,20 @@ pure function asRodrigues(self)
|
|||
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(4) :: asRodrigues
|
||||
|
||||
|
||||
asRodrigues = qu2ro(self%q%asArray())
|
||||
|
||||
|
||||
end function asRodrigues
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function asHomochoric(self)
|
||||
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), dimension(3) :: asHomochoric
|
||||
|
||||
|
||||
asHomochoric = qu2ho(self%q%asArray())
|
||||
|
||||
end function asHomochoric
|
||||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
! Initialize rotation from different representations
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
|
@ -207,7 +218,7 @@ subroutine fromAxisAngle(self,ax,degrees,P)
|
|||
else
|
||||
angle = merge(ax(4)*INRAD,ax(4),degrees)
|
||||
endif
|
||||
|
||||
|
||||
if (.not. present(P)) then
|
||||
axis = ax(1:3)
|
||||
else
|
||||
|
@ -217,7 +228,7 @@ subroutine fromAxisAngle(self,ax,degrees,P)
|
|||
|
||||
if(dNeq(norm2(axis),1.0_pReal) .or. angle < 0.0_pReal .or. angle > PI) &
|
||||
call IO_error(402,ext_msg='fromAxisAngle')
|
||||
|
||||
|
||||
self%q = ax2qu([axis,angle])
|
||||
|
||||
end subroutine fromAxisAngle
|
||||
|
@ -240,10 +251,10 @@ end subroutine fromMatrix
|
|||
!> @brief: Rotate a rotation
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure elemental function rotRot__(self,R) result(rRot)
|
||||
|
||||
|
||||
type(rotation) :: rRot
|
||||
class(rotation), intent(in) :: self,R
|
||||
|
||||
|
||||
rRot = rotation(self%q*R%q)
|
||||
call rRot%standardize()
|
||||
|
||||
|
@ -251,12 +262,12 @@ end function rotRot__
|
|||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!> @brief quaternion representation with positive q
|
||||
!> @brief quaternion representation with positive q
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure elemental subroutine standardize(self)
|
||||
|
||||
class(rotation), intent(inout) :: self
|
||||
|
||||
|
||||
if (real(self%q) < 0.0_pReal) self%q = self%q%homomorphed()
|
||||
|
||||
end subroutine standardize
|
||||
|
@ -267,22 +278,22 @@ end subroutine standardize
|
|||
!> @brief rotate a vector passively (default) or actively
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function rotVector(self,v,active) result(vRot)
|
||||
|
||||
|
||||
real(pReal), dimension(3) :: vRot
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), intent(in), dimension(3) :: v
|
||||
logical, intent(in), optional :: active
|
||||
|
||||
|
||||
real(pReal), dimension(3) :: v_normed
|
||||
type(quaternion) :: q
|
||||
logical :: passive
|
||||
|
||||
|
||||
if (present(active)) then
|
||||
passive = .not. active
|
||||
else
|
||||
passive = .true.
|
||||
endif
|
||||
|
||||
|
||||
if (dEq0(norm2(v))) then
|
||||
vRot = v
|
||||
else
|
||||
|
@ -304,12 +315,12 @@ end function rotVector
|
|||
!> @details: rotation is based on rotation matrix
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function rotTensor2(self,T,active) result(tRot)
|
||||
|
||||
|
||||
real(pReal), dimension(3,3) :: tRot
|
||||
class(rotation), intent(in) :: self
|
||||
real(pReal), intent(in), dimension(3,3) :: T
|
||||
logical, intent(in), optional :: active
|
||||
|
||||
|
||||
logical :: passive
|
||||
|
||||
if (present(active)) then
|
||||
|
@ -317,7 +328,7 @@ pure function rotTensor2(self,T,active) result(tRot)
|
|||
else
|
||||
passive = .true.
|
||||
endif
|
||||
|
||||
|
||||
if (passive) then
|
||||
tRot = matmul(matmul(self%asMatrix(),T),transpose(self%asMatrix()))
|
||||
else
|
||||
|
@ -339,7 +350,7 @@ pure function rotTensor4(self,T,active) result(tRot)
|
|||
class(rotation), intent(in) :: self
|
||||
real(pReal), intent(in), dimension(3,3,3,3) :: T
|
||||
logical, intent(in), optional :: active
|
||||
|
||||
|
||||
real(pReal), dimension(3,3) :: R
|
||||
integer :: i,j,k,l,m,n,o,p
|
||||
|
||||
|
@ -370,7 +381,7 @@ pure function rotTensor4sym(self,T,active) result(tRot)
|
|||
class(rotation), intent(in) :: self
|
||||
real(pReal), intent(in), dimension(6,6) :: T
|
||||
logical, intent(in), optional :: active
|
||||
|
||||
|
||||
if (present(active)) then
|
||||
tRot = math_sym3333to66(rotTensor4(self,math_66toSym3333(T),active))
|
||||
else
|
||||
|
@ -384,10 +395,10 @@ end function rotTensor4sym
|
|||
!> @brief misorientation
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure elemental function misorientation(self,other)
|
||||
|
||||
|
||||
type(rotation) :: misorientation
|
||||
class(rotation), intent(in) :: self, other
|
||||
|
||||
|
||||
misorientation%q = other%q * conjg(self%q)
|
||||
|
||||
end function misorientation
|
||||
|
@ -401,7 +412,7 @@ pure function qu2om(qu) result(om)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: qu
|
||||
real(pReal), dimension(3,3) :: om
|
||||
|
||||
|
||||
real(pReal) :: qq
|
||||
|
||||
qq = qu(1)**2-sum(qu(2:4)**2)
|
||||
|
@ -431,13 +442,13 @@ pure function qu2eu(qu) result(eu)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: qu
|
||||
real(pReal), dimension(3) :: eu
|
||||
|
||||
|
||||
real(pReal) :: q12, q03, chi
|
||||
|
||||
|
||||
q03 = qu(1)**2+qu(4)**2
|
||||
q12 = qu(2)**2+qu(3)**2
|
||||
chi = sqrt(q03*q12)
|
||||
|
||||
|
||||
degenerated: if (dEq0(q12)) then
|
||||
eu = [atan2(-P*2.0_pReal*qu(1)*qu(4),qu(1)**2-qu(4)**2), 0.0_pReal, 0.0_pReal]
|
||||
elseif (dEq0(q03)) then
|
||||
|
@ -460,7 +471,7 @@ pure function qu2ax(qu) result(ax)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: qu
|
||||
real(pReal), dimension(4) :: ax
|
||||
|
||||
|
||||
real(pReal) :: omega, s
|
||||
|
||||
if (dEq0(sum(qu(2:4)**2))) then
|
||||
|
@ -481,13 +492,13 @@ end function qu2ax
|
|||
!> @brief convert unit quaternion to Rodrigues vector
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function qu2ro(qu) result(ro)
|
||||
|
||||
|
||||
real(pReal), intent(in), dimension(4) :: qu
|
||||
real(pReal), dimension(4) :: ro
|
||||
|
||||
|
||||
real(pReal) :: s
|
||||
real(pReal), parameter :: thr = 1.0e-8_pReal
|
||||
|
||||
|
||||
if (abs(qu(1)) < thr) then
|
||||
ro = [qu(2), qu(3), qu(4), IEEE_value(1.0_pReal,IEEE_positive_inf)]
|
||||
else
|
||||
|
@ -497,7 +508,7 @@ pure function qu2ro(qu) result(ro)
|
|||
else
|
||||
ro = [qu(2)/s,qu(3)/s,qu(4)/s, tan(acos(math_clip(qu(1),-1.0_pReal,1.0_pReal)))]
|
||||
endif
|
||||
|
||||
|
||||
end if
|
||||
|
||||
end function qu2ro
|
||||
|
@ -511,12 +522,12 @@ pure function qu2ho(qu) result(ho)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: qu
|
||||
real(pReal), dimension(3) :: ho
|
||||
|
||||
|
||||
real(pReal) :: omega, f
|
||||
|
||||
omega = 2.0 * acos(math_clip(qu(1),-1.0_pReal,1.0_pReal))
|
||||
|
||||
if (dEq0(omega)) then
|
||||
|
||||
if (dEq0(omega,tol=1.e-5_pReal)) then
|
||||
ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ]
|
||||
else
|
||||
ho = qu(2:4)
|
||||
|
@ -532,7 +543,7 @@ end function qu2ho
|
|||
!> @brief convert unit quaternion to cubochoric
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function qu2cu(qu) result(cu)
|
||||
|
||||
|
||||
real(pReal), intent(in), dimension(4) :: qu
|
||||
real(pReal), dimension(3) :: cu
|
||||
|
||||
|
@ -565,18 +576,18 @@ pure function om2eu(om) result(eu)
|
|||
real(pReal), intent(in), dimension(3,3) :: om
|
||||
real(pReal), dimension(3) :: eu
|
||||
real(pReal) :: zeta
|
||||
|
||||
|
||||
if (abs(om(3,3)) < 1.0_pReal) then
|
||||
zeta = 1.0_pReal/sqrt(1.0_pReal-om(3,3)**2.0_pReal)
|
||||
eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), &
|
||||
acos(om(3,3)), &
|
||||
atan2(om(1,3)*zeta, om(2,3)*zeta)]
|
||||
else
|
||||
else
|
||||
eu = [atan2(om(1,2),om(1,1)), 0.5_pReal*PI*(1.0_pReal-om(3,3)),0.0_pReal ]
|
||||
end if
|
||||
|
||||
where(eu<0.0_pReal) eu = mod(eu+2.0_pReal*PI,[2.0_pReal*PI,PI,2.0_pReal*PI])
|
||||
|
||||
|
||||
end function om2eu
|
||||
|
||||
|
||||
|
@ -588,19 +599,19 @@ function om2ax(om) result(ax)
|
|||
|
||||
real(pReal), intent(in), dimension(3,3) :: om
|
||||
real(pReal), dimension(4) :: ax
|
||||
|
||||
|
||||
real(pReal) :: t
|
||||
real(pReal), dimension(3) :: Wr, Wi
|
||||
real(pReal), dimension((64+2)*3) :: work
|
||||
real(pReal), dimension(3,3) :: VR, devNull, om_
|
||||
integer :: ierr, i
|
||||
|
||||
|
||||
om_ = om
|
||||
|
||||
|
||||
! first get the rotation angle
|
||||
t = 0.5_pReal * (math_trace33(om) - 1.0_pReal)
|
||||
ax(4) = acos(math_clip(t,-1.0_pReal,1.0_pReal))
|
||||
|
||||
|
||||
if (dEq0(ax(4))) then
|
||||
ax(1:3) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal ]
|
||||
else
|
||||
|
@ -674,7 +685,7 @@ pure function eu2qu(eu) result(qu)
|
|||
real(pReal) :: cPhi, sPhi
|
||||
|
||||
ee = 0.5_pReal*eu
|
||||
|
||||
|
||||
cPhi = cos(ee(2))
|
||||
sPhi = sin(ee(2))
|
||||
|
||||
|
@ -692,15 +703,15 @@ end function eu2qu
|
|||
!> @brief Euler angles to orientation matrix
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function eu2om(eu) result(om)
|
||||
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: eu
|
||||
real(pReal), dimension(3,3) :: om
|
||||
|
||||
real(pReal), dimension(3) :: c, s
|
||||
|
||||
|
||||
real(pReal), dimension(3) :: c, s
|
||||
|
||||
c = cos(eu)
|
||||
s = sin(eu)
|
||||
|
||||
|
||||
om(1,1) = c(1)*c(3)-s(1)*s(3)*c(2)
|
||||
om(1,2) = s(1)*c(3)+c(1)*s(3)*c(2)
|
||||
om(1,3) = s(3)*s(2)
|
||||
|
@ -710,7 +721,7 @@ pure function eu2om(eu) result(om)
|
|||
om(3,1) = s(1)*s(2)
|
||||
om(3,2) = -c(1)*s(2)
|
||||
om(3,3) = c(2)
|
||||
|
||||
|
||||
where(dEq0(om)) om = 0.0_pReal
|
||||
|
||||
end function eu2om
|
||||
|
@ -721,19 +732,19 @@ end function eu2om
|
|||
!> @brief convert euler to axis angle
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function eu2ax(eu) result(ax)
|
||||
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: eu
|
||||
real(pReal), dimension(4) :: ax
|
||||
|
||||
|
||||
real(pReal) :: t, delta, tau, alpha, sigma
|
||||
|
||||
|
||||
t = tan(eu(2)*0.5_pReal)
|
||||
sigma = 0.5_pReal*(eu(1)+eu(3))
|
||||
delta = 0.5_pReal*(eu(1)-eu(3))
|
||||
tau = sqrt(t**2+sin(sigma)**2)
|
||||
|
||||
|
||||
alpha = merge(PI, 2.0_pReal*atan(tau/cos(sigma)), dEq(sigma,PI*0.5_pReal,tol=1.0e-15_pReal))
|
||||
|
||||
|
||||
if (dEq0(alpha)) then ! return a default identity axis-angle pair
|
||||
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
||||
else
|
||||
|
@ -741,7 +752,7 @@ pure function eu2ax(eu) result(ax)
|
|||
ax(4) = alpha
|
||||
if (alpha < 0.0_pReal) ax = -ax ! ensure alpha is positive
|
||||
end if
|
||||
|
||||
|
||||
end function eu2ax
|
||||
|
||||
|
||||
|
@ -753,7 +764,7 @@ pure function eu2ro(eu) result(ro)
|
|||
|
||||
real(pReal), intent(in), dimension(3) :: eu
|
||||
real(pReal), dimension(4) :: ro
|
||||
|
||||
|
||||
ro = eu2ax(eu)
|
||||
if (ro(4) >= PI) then
|
||||
ro(4) = IEEE_value(ro(4),IEEE_positive_inf)
|
||||
|
@ -762,7 +773,7 @@ pure function eu2ro(eu) result(ro)
|
|||
else
|
||||
ro(4) = tan(ro(4)*0.5_pReal)
|
||||
end if
|
||||
|
||||
|
||||
end function eu2ro
|
||||
|
||||
|
||||
|
@ -799,7 +810,7 @@ end function eu2cu
|
|||
!> @brief convert axis angle pair to quaternion
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
pure function ax2qu(ax) result(qu)
|
||||
|
||||
|
||||
real(pReal), intent(in), dimension(4) :: ax
|
||||
real(pReal), dimension(4) :: qu
|
||||
|
||||
|
@ -825,7 +836,7 @@ pure function ax2om(ax) result(om)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: ax
|
||||
real(pReal), dimension(3,3) :: om
|
||||
|
||||
|
||||
real(pReal) :: q, c, s, omc
|
||||
|
||||
c = cos(ax(4))
|
||||
|
@ -839,11 +850,11 @@ pure function ax2om(ax) result(om)
|
|||
q = omc*ax(1)*ax(2)
|
||||
om(1,2) = q + s*ax(3)
|
||||
om(2,1) = q - s*ax(3)
|
||||
|
||||
|
||||
q = omc*ax(2)*ax(3)
|
||||
om(2,3) = q + s*ax(1)
|
||||
om(3,2) = q - s*ax(1)
|
||||
|
||||
|
||||
q = omc*ax(3)*ax(1)
|
||||
om(3,1) = q + s*ax(2)
|
||||
om(1,3) = q - s*ax(2)
|
||||
|
@ -875,12 +886,12 @@ pure function ax2ro(ax) result(ro)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: ax
|
||||
real(pReal), dimension(4) :: ro
|
||||
|
||||
|
||||
real(pReal), parameter :: thr = 1.0e-7_pReal
|
||||
|
||||
|
||||
if (dEq0(ax(4))) then
|
||||
ro = [ 0.0_pReal, 0.0_pReal, P, 0.0_pReal ]
|
||||
else
|
||||
else
|
||||
ro(1:3) = ax(1:3)
|
||||
! we need to deal with the 180 degree case
|
||||
ro(4) = merge(IEEE_value(ro(4),IEEE_positive_inf),tan(ax(4)*0.5_pReal),abs(ax(4)-PI) < thr)
|
||||
|
@ -897,9 +908,9 @@ pure function ax2ho(ax) result(ho)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: ax
|
||||
real(pReal), dimension(3) :: ho
|
||||
|
||||
|
||||
real(pReal) :: f
|
||||
|
||||
|
||||
f = 0.75_pReal * ( ax(4) - sin(ax(4)) )
|
||||
f = f**(1.0_pReal/3.0_pReal)
|
||||
ho = ax(1:3) * f
|
||||
|
@ -916,7 +927,7 @@ function ax2cu(ax) result(cu)
|
|||
real(pReal), intent(in), dimension(4) :: ax
|
||||
real(pReal), dimension(3) :: cu
|
||||
|
||||
cu = ho2cu(ax2ho(ax))
|
||||
cu = ho2cu(ax2ho(ax))
|
||||
|
||||
end function ax2cu
|
||||
|
||||
|
@ -929,7 +940,7 @@ pure function ro2qu(ro) result(qu)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: ro
|
||||
real(pReal), dimension(4) :: qu
|
||||
|
||||
|
||||
qu = ax2qu(ro2ax(ro))
|
||||
|
||||
end function ro2qu
|
||||
|
@ -957,7 +968,7 @@ pure function ro2eu(ro) result(eu)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: ro
|
||||
real(pReal), dimension(3) :: eu
|
||||
|
||||
|
||||
eu = om2eu(ro2om(ro))
|
||||
|
||||
end function ro2eu
|
||||
|
@ -971,14 +982,14 @@ pure function ro2ax(ro) result(ax)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: ro
|
||||
real(pReal), dimension(4) :: ax
|
||||
|
||||
|
||||
real(pReal) :: ta, angle
|
||||
|
||||
|
||||
ta = ro(4)
|
||||
|
||||
|
||||
if (.not. IEEE_is_finite(ta)) then
|
||||
ax = [ ro(1), ro(2), ro(3), PI ]
|
||||
elseif (dEq0(ta)) then
|
||||
elseif (dEq0(ta)) then
|
||||
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
||||
else
|
||||
angle = 2.0_pReal*atan(ta)
|
||||
|
@ -997,9 +1008,9 @@ pure function ro2ho(ro) result(ho)
|
|||
|
||||
real(pReal), intent(in), dimension(4) :: ro
|
||||
real(pReal), dimension(3) :: ho
|
||||
|
||||
|
||||
real(pReal) :: f
|
||||
|
||||
|
||||
if (dEq0(norm2(ro(1:3)))) then
|
||||
ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ]
|
||||
else
|
||||
|
@ -1074,26 +1085,26 @@ pure function ho2ax(ho) result(ax)
|
|||
|
||||
real(pReal), intent(in), dimension(3) :: ho
|
||||
real(pReal), dimension(4) :: ax
|
||||
|
||||
|
||||
integer :: i
|
||||
real(pReal) :: hmag_squared, s, hm
|
||||
real(pReal), parameter, dimension(16) :: &
|
||||
tfit = [ 1.0000000000018852_pReal, -0.5000000002194847_pReal, &
|
||||
-0.024999992127593126_pReal, -0.003928701544781374_pReal, &
|
||||
-0.0008152701535450438_pReal, -0.0002009500426119712_pReal, &
|
||||
-0.00002397986776071756_pReal, -0.00008202868926605841_pReal, &
|
||||
+0.00012448715042090092_pReal, -0.0001749114214822577_pReal, &
|
||||
+0.0001703481934140054_pReal, -0.00012062065004116828_pReal, &
|
||||
+0.000059719705868660826_pReal, -0.00001980756723965647_pReal, &
|
||||
tfit = [ 1.0000000000018852_pReal, -0.5000000002194847_pReal, &
|
||||
-0.024999992127593126_pReal, -0.003928701544781374_pReal, &
|
||||
-0.0008152701535450438_pReal, -0.0002009500426119712_pReal, &
|
||||
-0.00002397986776071756_pReal, -0.00008202868926605841_pReal, &
|
||||
+0.00012448715042090092_pReal, -0.0001749114214822577_pReal, &
|
||||
+0.0001703481934140054_pReal, -0.00012062065004116828_pReal, &
|
||||
+0.000059719705868660826_pReal, -0.00001980756723965647_pReal, &
|
||||
+0.000003953714684212874_pReal, -0.00000036555001439719544_pReal ]
|
||||
|
||||
|
||||
! normalize h and store the magnitude
|
||||
hmag_squared = sum(ho**2.0_pReal)
|
||||
if (dEq0(hmag_squared)) then
|
||||
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
|
||||
else
|
||||
hm = hmag_squared
|
||||
|
||||
|
||||
! convert the magnitude to the rotation angle
|
||||
s = tfit(1) + tfit(2) * hmag_squared
|
||||
do i=3,16
|
||||
|
@ -1120,16 +1131,56 @@ pure function ho2ro(ho) result(ro)
|
|||
end function ho2ro
|
||||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief convert homochoric to cubochoric
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!--------------------------------------------------------------------------
|
||||
pure function ho2cu(ho) result(cu)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: ho
|
||||
real(pReal), dimension(3) :: cu
|
||||
real(pReal), intent(in), dimension(3) :: ho
|
||||
real(pReal), dimension(3) :: cu, xyz1, xyz3
|
||||
real(pReal), dimension(2) :: Tinv, xyz2
|
||||
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
||||
integer, dimension(3,2) :: p
|
||||
|
||||
cu = Lambert_BallToCube(ho)
|
||||
rs = norm2(ho)
|
||||
if (rs > R1+1.e-6_pReal) then
|
||||
cu = IEEE_value(cu,IEEE_positive_inf)
|
||||
return
|
||||
endif
|
||||
|
||||
center: if (all(dEq0(ho))) then
|
||||
cu = 0.0_pReal
|
||||
else center
|
||||
p = GetPyramidOrder(ho)
|
||||
xyz3 = ho(p(:,1))
|
||||
|
||||
! inverse M_3
|
||||
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
||||
|
||||
! inverse M_2
|
||||
qxy = sum(xyz2**2)
|
||||
|
||||
special: if (dEq0(qxy)) then
|
||||
Tinv = 0.0_pReal
|
||||
else special
|
||||
q2 = qxy + maxval(abs(xyz2))**2
|
||||
sq2 = sqrt(q2)
|
||||
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
||||
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
||||
Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
||||
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
||||
abs(xyz2(2)) <= abs(xyz2(1)))
|
||||
endif special
|
||||
|
||||
! inverse M_1
|
||||
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
cu = xyz1(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
end function ho2cu
|
||||
|
||||
|
@ -1204,25 +1255,93 @@ pure function cu2ro(cu) result(ro)
|
|||
end function cu2ro
|
||||
|
||||
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @brief convert cubochoric to homochoric
|
||||
!---------------------------------------------------------------------------------------------------
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief map from 3D cubic grid to 3D ball
|
||||
!--------------------------------------------------------------------------
|
||||
pure function cu2ho(cu) result(ho)
|
||||
|
||||
real(pReal), intent(in), dimension(3) :: cu
|
||||
real(pReal), dimension(3) :: ho
|
||||
real(pReal), intent(in), dimension(3) :: cu
|
||||
real(pReal), dimension(3) :: ho, LamXYZ, XYZ
|
||||
real(pReal), dimension(2) :: T
|
||||
real(pReal) :: c, s, q
|
||||
real(pReal), parameter :: eps = 1.0e-8_pReal
|
||||
integer, dimension(3,2) :: p
|
||||
integer, dimension(2) :: order
|
||||
|
||||
ho = Lambert_CubeToBall(cu)
|
||||
if (maxval(abs(cu)) > AP/2.0+eps) then
|
||||
ho = IEEE_value(cu,IEEE_positive_inf)
|
||||
return
|
||||
end if
|
||||
|
||||
! transform to the sphere grid via the curved square, and intercept the zero point
|
||||
center: if (all(dEq0(cu))) then
|
||||
ho = 0.0_pReal
|
||||
else center
|
||||
! get pyramide and scale by grid parameter ratio
|
||||
p = GetPyramidOrder(cu)
|
||||
XYZ = cu(p(:,1)) * sc
|
||||
|
||||
! intercept all the points along the z-axis
|
||||
special: if (all(dEq0(XYZ(1:2)))) then
|
||||
LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ]
|
||||
else special
|
||||
order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ
|
||||
q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
|
||||
c = cos(q)
|
||||
s = sin(q)
|
||||
q = prek * XYZ(order(2))/ sqrt(R2-c)
|
||||
T = [ (R2*c - 1.0), R2 * s] * q
|
||||
|
||||
! transform to sphere grid (inverse Lambert)
|
||||
! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
|
||||
c = sum(T**2)
|
||||
s = Pi * c/(24.0*XYZ(3)**2)
|
||||
c = sPi * c / sqrt(24.0_pReal) / XYZ(3)
|
||||
q = sqrt( 1.0 - s )
|
||||
LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ]
|
||||
endif special
|
||||
|
||||
! reverse the coordinates back to order according to the original pyramid number
|
||||
ho = LamXYZ(p(:,2))
|
||||
|
||||
endif center
|
||||
|
||||
end function cu2ho
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief determine to which pyramid a point in a cubic grid belongs
|
||||
!--------------------------------------------------------------------------
|
||||
pure function GetPyramidOrder(xyz)
|
||||
|
||||
real(pReal),intent(in),dimension(3) :: xyz
|
||||
integer, dimension(3,2) :: GetPyramidOrder
|
||||
|
||||
if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. &
|
||||
((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then
|
||||
GetPyramidOrder = reshape([[1,2,3],[1,2,3]],[3,2])
|
||||
else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. &
|
||||
((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then
|
||||
GetPyramidOrder = reshape([[2,3,1],[3,1,2]],[3,2])
|
||||
else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. &
|
||||
((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then
|
||||
GetPyramidOrder = reshape([[3,1,2],[2,3,1]],[3,2])
|
||||
else
|
||||
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
|
||||
end if
|
||||
|
||||
end function GetPyramidOrder
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief check correctness of some rotations functions
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine unitTest
|
||||
|
||||
|
||||
type(rotation) :: R
|
||||
real(pReal), dimension(4) :: qu, ax, ro
|
||||
real(pReal), dimension(3) :: x, eu, ho, v3
|
||||
|
@ -1233,7 +1352,7 @@ subroutine unitTest
|
|||
integer :: i
|
||||
|
||||
do i=1,10
|
||||
|
||||
|
||||
msg = ''
|
||||
|
||||
#if defined(__GFORTRAN__) && __GNUC__<9
|
||||
|
@ -1307,15 +1426,15 @@ subroutine unitTest
|
|||
#endif
|
||||
|
||||
call R%fromMatrix(om)
|
||||
|
||||
|
||||
call random_number(v3)
|
||||
if(all(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) &
|
||||
msg = trim(msg)//'rotVector,'
|
||||
|
||||
|
||||
call random_number(t33)
|
||||
if(all(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) &
|
||||
msg = trim(msg)//'rotTensor2,'
|
||||
|
||||
|
||||
call random_number(t3333)
|
||||
if(all(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) &
|
||||
msg = trim(msg)//'rotTensor4,'
|
||||
|
|
Loading…
Reference in New Issue