updated hybridIA sampling to work with new format

cropLinearODF is not working for the new format, but filterTable should be able to do the task
This commit is contained in:
Martin Diehl 2015-04-27 05:30:29 +00:00
parent 97aba96ff8
commit 906c3f63a1
3 changed files with 76 additions and 187 deletions

View File

@ -2,7 +2,7 @@
# Header: Project1::test1000::All data::Binned: Size=5.0, HW=5.0 4/15/2015
# Bin Size: 5.0º
# Gaussian Smoothing: 5.0º
phi1 PHI phi2 intensity
phi1 Phi phi2 intensity
2.50 2.50 2.50 0.980476
2.50 2.50 7.50 0.773179
2.50 2.50 12.50 0.393272

View File

@ -1,105 +0,0 @@
#!/usr/bin/env python
import os,sys,math,re
# --- helper functions ---
def binAsBins(bin,intervals):
""" explode compound bin into 3D bins list """
bins = [0]*3
bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0]
bins[1] = (bin//intervals[2]) % intervals[1]
bins[2] = bin % intervals[2]
return bins
def binsAsBin(bins,intervals):
""" implode 3D bins into compound bin """
return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2]
def EulersAsBins(Eulers,intervals,deltas,center):
""" return list of Eulers translated into 3D bins list """
return [\
int((euler+(0.5-center)*delta)//delta)%interval \
for euler,delta,interval in zip(Eulers,deltas,intervals) \
]
def binAsEulers(bin,intervals,deltas,center):
""" compound bin number translated into list of Eulers """
Eulers = [0.0]*3
Eulers[2] = (bin%intervals[2] + center)*deltas[2]
Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1]
Eulers[0] = (bin//(intervals[2]*intervals[1]) + center)*deltas[0]
return Eulers
# check usage
try:
inName = sys.argv[1]
outLimits = sys.argv[2:5]
except:
print "usage:",sys.argv[0],"nameLinearODF limitPhi1 limitPHI limitPhi2"
sys.exit(1);
#open binned ODF
try:
inFile = open(inName,'r')
except:
print 'unable to open binnedODF:', inName;
sys.exit(1);
# process header info
ODF = {}
inLimits = [math.radians(int(float(limit))) for limit in inFile.readline().split()]
outLimits = [math.radians(int(float(limit))) for limit in outLimits]
deltas = [math.radians(float(delta)) for delta in inFile.readline().split()]
inIntervals = [int(limit/delta) for limit,delta in zip(inLimits,deltas)]
outIntervals = [int(limit/delta) for limit,delta in zip(outLimits,deltas)]
inBins = inIntervals[0]*inIntervals[1]*inIntervals[2]
print 'Limit:', [math.degrees(limit) for limit in inLimits]
print 'Crop:', [math.degrees(limit) for limit in outLimits]
print 'Delta:', [math.degrees(delta) for delta in deltas]
print 'Interval:', inIntervals
print 'Interval:', outIntervals
centering = inFile.readline()
if re.search('cell',centering.lower()):
ODF['center'] = 0.5
print 'cell-centered data (offset %g)'%ODF['center']
else:
ODF['center'] = 0.0
print 'vertex-centered data (offset %g)'%ODF['center']
inFile.readline() # skip blank delimiter
# read linear binned data
inODF = map(float,inFile.readlines())
inFile.close()
if len(inODF) != inBins:
print 'expecting', inBins, 'values but got', len(inODF)
sys.exit(1)
try:
outName = os.path.splitext(inName)[0]+'_%ix%ix%i'%(outIntervals[0],outIntervals[1],outIntervals[2])+'.linearODF'
outFile = open(outName,'w')
except:
print 'unable to write:',outName
sys.exit(1)
outFile.write('%g\t%g\t%g\n'%(\
math.degrees(outIntervals[0]*deltas[0]),\
math.degrees(outIntervals[1]*deltas[1]),\
math.degrees(outIntervals[2]*deltas[2]) ))
outFile.write('%i\t%i\t%i\n'%(math.degrees(deltas[0]),math.degrees(deltas[1]),math.degrees(deltas[2])))
outFile.write('%s-centered data\n'%{True:'vertex',False:'cell'}[ODF['center']==0.0])
outFile.write('\n')
for phi1 in range(outIntervals[0]):
for Phi in range(outIntervals[1]):
for phi2 in range(outIntervals[2]):
outFile.write('%g\n'%(inODF[((phi1*inIntervals[1])+Phi)*inIntervals[2]+phi2]))
outFile.close()

View File

@ -8,8 +8,6 @@ import numpy as np
scriptID = string.replace('$Id$','\n','\\n')
scriptName = scriptID.split()[1]
random.seed(1)
# --- helper functions ---
def binAsBins(bin,intervals):
@ -78,10 +76,12 @@ def directInversion (ODF,nSamples):
incFactor = 1.0
nInvSamplesUpper = directInvRepetitions(ODF['dV_V'],scaleUpper)
nIter += 1
print '%i:(%12.11f,%12.11f) %i <= %i <= %i'%(nIter,scaleLower,scaleUpper,nInvSamplesLower,nOptSamples,nInvSamplesUpper)
file['croak'].write('%i:(%12.11f,%12.11f) %i <= %i <= %i\n'\
%(nIter,scaleLower,scaleUpper,nInvSamplesLower,nOptSamples,nInvSamplesUpper))
nInvSamples = nInvSamplesUpper
scale = scaleUpper
print 'created set of',nInvSamples,'samples (',float(nInvSamples)/nOptSamples-1.0,') with scaling',scale,'delivering',nSamples
file['croak'].write('created set of %i samples (%12.11f) with scaling %12.11f delivering %i\n'\
%(nInvSamples,float(nInvSamples)/nOptSamples-1.0,scale,nSamples))
repetition = [None]*ODF['nBins'] # preallocate and clear
for bin in range(ODF['nBins']): # loop over bins
@ -181,8 +181,7 @@ def TothVanHoutteSTAT (ODF,nSamples):
reconstructedODF[bin] += unitInc
countSamples += 1
indexSelector += 1
print 'created set of',countSamples,'when asked to deliver',nSamples
file['croak'].write('created set of %i when asked to deliver %i\n'%(countSamples,nSamples))
return orientations, reconstructedODF
@ -190,35 +189,23 @@ def TothVanHoutteSTAT (ODF,nSamples):
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
identifiers = {
'limit': ['phi1','phi','phi2'],
'delta': ['phi1','phi','phi2'],
}
mappings = {
'limit': lambda x: math.radians(float(x)),
'delta': lambda x: math.radians(float(x)),
'origin': lambda x: str(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Transform linear binned data into Euler angles.
""", version = scriptID)
parser.add_option('-n', '--number', dest='number', type='int', metavar = 'int',
help='the number of orientations needed to be generated, the default is [%default]')
help='number of orientations to be generated [%default]')
parser.add_option('-a','--algorithm', dest='algorithm', type='string', metavar = 'string',
help='''The algorithm adopted, three algorithms are provided,
that is:
[IA]: direct inversion,
[STAT]: Van Houtte,
[MC]: Monte Carlo.
the default is [%default].''') #make (multiple) choice
help='sampling algorithm. IA: direct inversion, STAT: Van Houtte, MC: Monte Carlo. [%default].') #make choice
parser.add_option('-p','--phase', dest='phase', type='int', metavar = 'int',
help='phase index to be used [%default]')
parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int',
help='crystallite index to be used [%default]')
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int', \
help='seed of random number generator [%default]')
parser.set_defaults(randomSeed = None)
parser.set_defaults(number = 500)
parser.set_defaults(algorithm = 'IA')
parser.set_defaults(phase = 1)
@ -228,80 +215,86 @@ parser.set_defaults(crystallite = 1)
nSamples = options.number
methods = [options.algorithm]
if options.randomSeed == None:
options.randomSeed = int(os.urandom(4).encode('hex'), 16)
random.seed(options.randomSeed)
#--- setup file handles ---------------------------------------------------------------------------
files = []
if filenames == []:
files.append({'name':'STDIN',
'input':sys.stdin,
'output':sys.stdout,
'croak':sys.stderr,
})
files.append({'name':'STDIN','input':sys.stdin,'output':sys.stdout,'croak':sys.stderr})
else:
for name in filenames:
if os.path.exists(name):
files.append({'name':name,
'input':open(name),
'output':open(name+'_tmp','w'),
'croak':sys.stdout,
})
files.append({'name':name,'input':open(name),'output':open(name+'_tmp','w'),'croak':sys.stdout})
#--- loop over input files ------------------------------------------------------------------------
for file in files:
file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n')
ODF = {
'limit': np.empty(3,'d'),
'delta': np.empty(3,'d'),
'interval':np.empty(3,'i'),
'origin': ''
}
table = damask.ASCIItable(file['input'],file['output'],buffered = False)
table.head_read()
for header in table.info:
headitems = map(str.lower,header.split())
if len(headitems) == 0: continue
if headitems[0] in mappings.keys():
if headitems[0] in identifiers.keys():
for i in xrange(len(identifiers[headitems[0]])):
ODF[headitems[0]][i] = \
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
else:
ODF[headitems[0]] = mappings[headitems[0]](headitems[1])
# --------------- figure out columns in table ----------- -----------------------------------------
column = {}
pos = 0
keys = ['phi1','Phi','phi2','intensity']
for key in keys:
if key not in table.labels:
file['croak'].write('column %s not found...\n'%key)
else:
column[key] = pos
pos+=1
if pos != 4: continue
ODF['interval'] = np.array([int(round(limit/delta)) for limit,delta in zip(ODF['limit'],ODF['delta'])])
ODF['nBins'] = ODF['interval'].prod()
if re.search('boundary',ODF['origin'].lower()):
ODF['center'] = 0.5
else:
binnedODF = table.data_readArray(keys)
# --------------- figure out limits (left/right), delta, and interval -----------------------------
ODF = {}
limits = np.array([[np.min(table.data[:,column['phi1']]),\
np.min(table.data[:,column['Phi']]),\
np.min(table.data[:,column['phi2']])],\
[np.max(table.data[:,column['phi1']]),\
np.max(table.data[:,column['Phi']]),\
np.max(table.data[:,column['phi2']])]])
ODF['limit'] = np.radians(limits[1,:])
if all(limits[0,:]<1e-8): # vertex centered
ODF['center'] = 0.0
binnedODF=table.data_readArray([table.labels.index('intensity')])
else: # cell centered
ODF['center'] = 0.5
eulers = [{},{},{}]
for i in xrange(table.data.shape[0]):
for j in xrange(3):
eulers[j][str(table.data[i,column[keys[j]]])] = True # remember eulers along phi1, Phi, and phi2
ODF['interval'] = np.array([len(eulers[0]),len(eulers[1]),len(eulers[2]),],'i') # steps are number of distict values
ODF['nBins'] = ODF['interval'].prod()
ODF['delta'] = np.radians(np.array(limits[1,0:3]-limits[0,0:3])/(ODF['interval']-1))
if binnedODF[0] != ODF['nBins']:
print 'expecting', ODF['nBins'], 'values but got', len(linesBinnedODF)
sys.exit(1)
file['croak'].write('expecting %i values but got %i'%(ODF['nBins'],len(linesBinnedODF)))
continue
# build binnedODF array
sumdV_V = 0.0
ODF['dV_V'] = [None]*ODF['nBins']
ODF['nNonZero'] = 0
dg = ODF['delta'][0]*2*math.sin(ODF['delta'][1]/2.0)*ODF['delta'][2]
for bin in range(ODF['nBins']):
ODF['dV_V'][bin] = \
max(0.0,table.data[bin,0]) * dg * \
math.sin(((bin//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
if ODF['dV_V'][bin] > 0.0:
sumdV_V += ODF['dV_V'][bin]
dg = ODF['delta'][0]*2.0*math.sin(ODF['delta'][1]/2.0)*ODF['delta'][2]
for b in range(ODF['nBins']):
ODF['dV_V'][b] = \
max(0.0,table.data[b,column['intensity']]) * dg * \
math.sin(((b//ODF['interval'][2])%ODF['interval'][1]+ODF['center'])*ODF['delta'][1])
if ODF['dV_V'][b] > 0.0:
sumdV_V += ODF['dV_V'][b]
ODF['nNonZero'] += 1
for bin in range(ODF['nBins']): ODF['dV_V'][bin] /= sumdV_V # normalize dV/V
print 'non-zero fraction:', float(ODF['nNonZero'])/ODF['nBins'],'(%i/%i)'%(ODF['nNonZero'],ODF['nBins'])
print 'Volume integral of ODF:', sumdV_V
print 'Reference Integral:', ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))
for b in range(ODF['nBins']): ODF['dV_V'][b] /= sumdV_V # normalize dV/V
file['croak'].write('non-zero fraction: %12.11f (%i/%i)\n'\
%(float(ODF['nNonZero'])/ODF['nBins'],ODF['nNonZero'],ODF['nBins']))
file['croak'].write('Volume integral of ODF: %12.11f\n'%sumdV_V)
file['croak'].write('Reference Integral: %12.11f\n'\
%(ODF['limit'][0]*ODF['limit'][2]*(1-math.cos(ODF['limit'][1]))))
# call methods
Functions = {'IA': 'directInversion', 'STAT': 'TothVanHoutteSTAT', 'MC': 'MonteCarloBins'}
@ -326,15 +319,16 @@ for file in files:
indivSum['orig'] += ODF['dV_V'][bin]
indivSquaredSum['orig'] += ODF['dV_V'][bin]**2
print 'sqrt(N*)RMSD of ODFs:\t', math.sqrt(nSamples*squaredDiff[method])
print 'RMSrD of ODFs:\t', math.sqrt(squaredRelDiff[method])
print 'rMSD of ODFs:\t', squaredDiff[method]/indivSquaredSum['orig']
print 'nNonZero correlation slope:\t', (ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/\
(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2)
print 'nNonZero correlation confidence:\t',\
(mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*\
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))
file['croak'].write('sqrt(N*)RMSD of ODFs:\t %12.11f\n'% math.sqrt(nSamples*squaredDiff[method]))
file['croak'].write('RMSrD of ODFs:\t %12.11f\n'%math.sqrt(squaredRelDiff[method]))
file['croak'].write('rMSD of ODFs:\t %12.11f\n'%(squaredDiff[method]/indivSquaredSum['orig']))
file['croak'].write('nNonZero correlation slope:\t %12.11f\n'\
%((ODF['nNonZero']*mutualProd[method]-indivSum['orig']*indivSum[method])/\
(ODF['nNonZero']*indivSquaredSum['orig']-indivSum['orig']**2)))
file['croak'].write( 'nNonZero correlation confidence:\t %12.11f\n'\
%((mutualProd[method]-indivSum['orig']*indivSum[method]/ODF['nNonZero'])/\
(ODF['nNonZero']*math.sqrt((indivSquaredSum['orig']/ODF['nNonZero']-(indivSum['orig']/ODF['nNonZero'])**2)*\
(indivSquaredSum[method]/ODF['nNonZero']-(indivSum[method]/ODF['nNonZero'])**2)))))
if method == 'IA' and nSamples < ODF['nNonZero']:
strOpt = '(%i)'%ODF['nNonZero']