Added Ctrans to homogenizedC and strain-induced martensite part to basic states
This commit is contained in:
parent
b2787f8e66
commit
8e6ea7d9c7
|
@ -30,9 +30,9 @@ module constitutive_dislotwin
|
|||
CONSTITUTIVE_DISLOTWIN_listBasicTwinStates = &
|
||||
['twinFraction', 'accsheartwin']
|
||||
|
||||
character(len=13), dimension(1), parameter, private :: &
|
||||
character(len=19), dimension(2), parameter, private :: &
|
||||
CONSTITUTIVE_DISLOTWIN_listBasicTransStates = &
|
||||
['transFraction']
|
||||
['stressTransFraction', 'strainTransFraction']
|
||||
|
||||
character(len=17), dimension(4), parameter, private :: &
|
||||
CONSTITUTIVE_DISLOTWIN_listDependentSlipStates = &
|
||||
|
@ -91,6 +91,10 @@ module constitutive_dislotwin
|
|||
constitutive_dislotwin_Ctwin66 !< twin elasticity matrix in Mandel notation for each instance
|
||||
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
|
||||
constitutive_dislotwin_Ctwin3333 !< twin elasticity matrix for each instance
|
||||
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
||||
constitutive_dislotwin_Ctrans66 !< trans elasticity matrix in Mandel notation for each instance
|
||||
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
|
||||
constitutive_dislotwin_Ctrans3333 !< trans elasticity matrix for each instance
|
||||
real(pReal), dimension(:,:), allocatable, private :: &
|
||||
constitutive_dislotwin_rhoEdge0, & !< initial edge dislocation density per slip system for each family and instance
|
||||
constitutive_dislotwin_rhoEdgeDip0, & !< initial edge dipole density per slip system for each family and instance
|
||||
|
@ -215,7 +219,7 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
|
||||
integer(pInt), parameter :: MAXNCHUNKS = LATTICE_maxNinteraction + 1_pInt
|
||||
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
|
||||
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,maxTotalNtwin,&
|
||||
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,maxTotalNtwin,maxTotalNtrans,&
|
||||
f,instance,j,k,l,m,n,o,p,q,r,s,ns,nt,nr, &
|
||||
Nchunks_SlipSlip, Nchunks_SlipTwin, Nchunks_TwinSlip, Nchunks_TwinTwin, &
|
||||
Nchunks_SlipFamilies, Nchunks_TwinFamilies, Nchunks_TransFamilies, &
|
||||
|
@ -676,6 +680,7 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
! allocation of variables whose size depends on the total number of active slip systems
|
||||
maxTotalNslip = maxval(constitutive_dislotwin_totalNslip)
|
||||
maxTotalNtwin = maxval(constitutive_dislotwin_totalNtwin)
|
||||
maxTotalNtrans = maxval(constitutive_dislotwin_totalNtrans)
|
||||
|
||||
allocate(constitutive_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||||
|
@ -702,6 +707,8 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_Ctwin66(6,6,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_Ctwin3333(3,3,3,3,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_Ctrans66(6,6,maxTotalNtrans,maxNinstance), source=0.0_pReal)
|
||||
allocate(constitutive_dislotwin_Ctrans3333(3,3,3,3,maxTotalNtrans,maxNinstance), source=0.0_pReal)
|
||||
|
||||
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
|
||||
myPhase2: if (phase_plasticity(phase) == PLASTICITY_dislotwin_ID) then
|
||||
|
@ -891,6 +898,30 @@ subroutine constitutive_dislotwin_init(fileUnit)
|
|||
enddo twinSystemsLoop
|
||||
enddo twinFamiliesLoop
|
||||
|
||||
!* Process transformation related parameters ------------------------------------------------
|
||||
transFamiliesLoop: do f = 1_pInt,lattice_maxNtransFamily
|
||||
index_myFamily = sum(constitutive_dislotwin_Ntrans(1:f-1_pInt,instance)) ! index in truncated trans system list
|
||||
transSystemsLoop: do j = 1_pInt,constitutive_dislotwin_Ntrans(f,instance)
|
||||
|
||||
!* Rotate trans elasticity matrices
|
||||
index_otherFamily = sum(lattice_NtransSystem(1:f-1_pInt,phase)) ! index in full lattice trans list
|
||||
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt
|
||||
do p = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt
|
||||
constitutive_dislotwin_Ctrans3333(l,m,n,o,index_myFamily+j,instance) = &
|
||||
constitutive_dislotwin_Ctrans3333(l,m,n,o,index_myFamily+j,instance) + &
|
||||
lattice_C3333(p,q,r,s,instance) * &
|
||||
lattice_Qtrans(l,p,index_otherFamily+j,phase) * &
|
||||
lattice_Qtrans(m,q,index_otherFamily+j,phase) * &
|
||||
lattice_Qtrans(n,r,index_otherFamily+j,phase) * &
|
||||
lattice_Qtrans(o,s,index_otherFamily+j,phase)
|
||||
enddo; enddo; enddo; enddo
|
||||
enddo; enddo; enddo; enddo
|
||||
constitutive_dislotwin_Ctrans66(1:6,1:6,index_myFamily+j,instance) = &
|
||||
math_Mandel3333to66(constitutive_dislotwin_Ctrans3333(1:3,1:3,1:3,1:3,index_myFamily+j,instance))
|
||||
|
||||
enddo transSystemsLoop
|
||||
enddo transFamiliesLoop
|
||||
|
||||
call constitutive_dislotwin_stateInit(phase,instance)
|
||||
call constitutive_dislotwin_aTolState(phase,instance)
|
||||
endif myPhase2
|
||||
|
@ -953,30 +984,30 @@ subroutine constitutive_dislotwin_stateInit(ph,instance)
|
|||
forall (i = 1_pInt:ns) &
|
||||
invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_forestProjectionEdge(1:ns,i,instance)))/ &
|
||||
constitutive_dislotwin_CLambdaSlipPerSlipSystem(i,instance)
|
||||
tempState(3_pInt*ns+2_pInt*nt+nr+1:4_pInt*ns+2_pInt*nt+nr) = invLambdaSlip0
|
||||
tempState(3_pInt*ns+2_pInt*nt+2_pInt*nr+1:4_pInt*ns+2_pInt*nt+2_pInt*nr) = invLambdaSlip0
|
||||
|
||||
forall (i = 1_pInt:ns) &
|
||||
MeanFreePathSlip0(i) = &
|
||||
constitutive_dislotwin_GrainSize(instance)/(1.0_pReal+invLambdaSlip0(i)*constitutive_dislotwin_GrainSize(instance))
|
||||
tempState(5_pInt*ns+3_pInt*nt+nr+1:6_pInt*ns+3_pInt*nt+nr) = MeanFreePathSlip0
|
||||
tempState(5_pInt*ns+3_pInt*nt+2_pInt*nr+1:6_pInt*ns+3_pInt*nt+2_pInt*nr) = MeanFreePathSlip0
|
||||
|
||||
forall (i = 1_pInt:ns) &
|
||||
tauSlipThreshold0(i) = &
|
||||
lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(i,instance) * &
|
||||
sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_interactionMatrix_SlipSlip(i,1:ns,instance)))
|
||||
|
||||
tempState(6_pInt*ns+4_pInt*nt+nr+1:7_pInt*ns+4_pInt*nt+nr) = tauSlipThreshold0
|
||||
tempState(6_pInt*ns+4_pInt*nt+2_pInt*nr+1:7_pInt*ns+4_pInt*nt+2_pInt*nr) = tauSlipThreshold0
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! initialize dependent twin microstructural variables
|
||||
forall (j = 1_pInt:nt) &
|
||||
MeanFreePathTwin0(j) = constitutive_dislotwin_GrainSize(instance)
|
||||
tempState(6_pInt*ns+3_pInt*nt+nr+1_pInt:6_pInt*ns+4_pInt*nt+nr) = MeanFreePathTwin0
|
||||
tempState(6_pInt*ns+3_pInt*nt+2_pInt*nr+1_pInt:6_pInt*ns+4_pInt*nt+2_pInt*nr) = MeanFreePathTwin0
|
||||
|
||||
forall (j = 1_pInt:nt) &
|
||||
TwinVolume0(j) = &
|
||||
(pi/4.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(j,instance)*MeanFreePathTwin0(j)**(2.0_pReal)
|
||||
tempState(7_pInt*ns+5_pInt*nt+nr+1_pInt:7_pInt*ns+6_pInt*nt+nr) = TwinVolume0
|
||||
tempState(7_pInt*ns+5_pInt*nt+2_pInt*nr+1_pInt:7_pInt*ns+6_pInt*nt+2_pInt*nr) = TwinVolume0
|
||||
|
||||
plasticState(ph)%state0 = spread(tempState,2,size(plasticState(ph)%state(1,:)))
|
||||
|
||||
|
@ -1012,13 +1043,17 @@ subroutine constitutive_dislotwin_aTolState(ph,instance)
|
|||
plasticState(ph)%aTolState(3_pInt*ns+1_pInt: &
|
||||
3_pInt*ns+nt) = constitutive_dislotwin_aTolTwinFrac(instance)
|
||||
|
||||
! Tolerance state for accumulated shear due to twin
|
||||
! Tolerance state for accumulated shear due to twin
|
||||
plasticState(ph)%aTolState(3_pInt*ns+nt+1_pInt: &
|
||||
3_pInt*ns+2_pInt*nt) = 1.0e6_pReal
|
||||
|
||||
! Tolerance state for transformation volume fraction
|
||||
! Tolerance state for stress-assisted martensite volume fraction
|
||||
plasticState(ph)%aTolState(3_pInt*ns+2_pInt*nt+1_pInt: &
|
||||
3_pInt*ns+2_pInt*nt+nr) = 1.0e6_pReal !Todo
|
||||
3_pInt*ns+2_pInt*nt+nr) = 1.0e-5 !Todo
|
||||
|
||||
! Tolerance state for strain-induced martensite volume fraction
|
||||
plasticState(ph)%aTolState(3_pInt*ns+2_pInt*nt+nr+1_pInt: &
|
||||
3_pInt*ns+2_pInt*nt+2_pInt*nr) = 1.0e-6 !Todo
|
||||
|
||||
end subroutine constitutive_dislotwin_aTolState
|
||||
|
||||
|
@ -1049,10 +1084,10 @@ function constitutive_dislotwin_homogenizedC(ipc,ip,el)
|
|||
ip, & !< integration point
|
||||
el !< element
|
||||
|
||||
integer(pInt) :: instance,ns,nt,i, &
|
||||
integer(pInt) :: instance,ns,nt,nr,i, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: sumf
|
||||
real(pReal) :: sumf, sumftr
|
||||
|
||||
!* Shortened notation
|
||||
of = mappingConstitutive(1,ipc,ip,el)
|
||||
|
@ -1060,15 +1095,26 @@ function constitutive_dislotwin_homogenizedC(ipc,ip,el)
|
|||
instance = phase_plasticityInstance(ph)
|
||||
ns = constitutive_dislotwin_totalNslip(instance)
|
||||
nt = constitutive_dislotwin_totalNtwin(instance)
|
||||
nr = constitutive_dislotwin_totalNtrans(instance)
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt),of)) ! safe for nt == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(plasticState(ph)%state((3_pInt*ns+2_pInt*nt+1_pInt):(3_pInt*ns+2_pInt*nt+nr), of)) + &
|
||||
sum(plasticState(ph)%state((3_pInt*ns+2_pInt*nt+nr+1_pInt):(3_pInt*ns+2_pInt*nt+2_pInt*nr), of))
|
||||
|
||||
!* Homogenized elasticity matrix
|
||||
constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf)*lattice_C66(1:6,1:6,ph)
|
||||
constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
|
||||
do i=1_pInt,nt
|
||||
constitutive_dislotwin_homogenizedC = constitutive_dislotwin_homogenizedC &
|
||||
+ plasticState(ph)%state(3_pInt*ns+i, of)*constitutive_dislotwin_Ctwin66(1:6,1:6,i,instance)
|
||||
enddo
|
||||
do i=1_pInt,nr
|
||||
constitutive_dislotwin_homogenizedC = constitutive_dislotwin_homogenizedC &
|
||||
+ (plasticState(ph)%state(3_pInt*ns+2_pInt*nt+i, of) + plasticState(ph)%state(3_pInt*ns+2_pInt*nt+nr+i, of))*&
|
||||
constitutive_dislotwin_Ctrans66(1:6,1:6,i,instance)
|
||||
enddo
|
||||
|
||||
end function constitutive_dislotwin_homogenizedC
|
||||
|
||||
|
@ -1128,16 +1174,17 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
!* State: 2*ns+1 : 3*ns accumulated shear due to slip
|
||||
!* State: 3*ns+1 : 3*ns+nt f
|
||||
!* State: 3*ns+nt+1 : 3*ns+2*nt accumulated shear due to twin
|
||||
!* State: 3*ns+2*nt+1 : 3*ns+2*nt+nr transformed volume fraction
|
||||
!* State: 3*ns+2*nt+1 : 3*ns+2*nt+nr stress-assisted martensite volume fraction
|
||||
!* State: 3*ns+2*nt+nr+1 : 3*ns+2*nt+2*nr strain-induced martensite volume fraction
|
||||
!DEPENDENT STATES
|
||||
!* State: 3*ns+2*nt+nr+1 : 4*ns+2*nt+nr 1/lambda_slip
|
||||
!* State: 4*ns+2*nt+nr+1 : 5*ns+2*nt+nr 1/lambda_sliptwin
|
||||
!* State: 5*ns+2*nt+nr+1 : 5*ns+3*nt+nr 1/lambda_twin
|
||||
!* State: 5*ns+3*nt+nr+1 : 6*ns+3*nt+nr mfp_slip
|
||||
!* State: 6*ns+3*nt+nr+1 : 6*ns+4*nt+nr mfp_twin
|
||||
!* State: 6*ns+4*nt+nr+1 : 7*ns+4*nt+nr threshold_stress_slip
|
||||
!* State: 7*ns+4*nt+nr+1 : 7*ns+5*nt+nr threshold_stress_twin
|
||||
!* State: 7*ns+5*nt+nr+1 : 7*ns+6*nt+nr twin volume
|
||||
!* State: 3*ns+2*nt+2*nr+1 : 4*ns+2*nt+2*nr 1/lambda_slip
|
||||
!* State: 4*ns+2*nt+2*nr+1 : 5*ns+2*nt+2*nr 1/lambda_sliptwin
|
||||
!* State: 5*ns+2*nt+2*nr+1 : 5*ns+3*nt+2*nr 1/lambda_twin
|
||||
!* State: 5*ns+3*nt+2*nr+1 : 6*ns+3*nt+2*nr mfp_slip
|
||||
!* State: 6*ns+3*nt+2*nr+1 : 6*ns+4*nt+2*nr mfp_twin
|
||||
!* State: 6*ns+4*nt+2*nr+1 : 7*ns+4*nt+2*nr threshold_stress_slip
|
||||
!* State: 7*ns+4*nt+2*nr+1 : 7*ns+5*nt+2*nr threshold_stress_twin
|
||||
!* State: 7*ns+5*nt+2*nr+1 : 7*ns+6*nt+2*nr twin volume
|
||||
|
||||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3*ns+1):(3*ns+nt), of)) ! safe for nt == 0
|
||||
|
@ -1153,55 +1200,56 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||||
forall (s = 1_pInt:ns) &
|
||||
plasticState(ph)%state(3_pInt*ns+2_pInt*nt+nr+s, of) = &
|
||||
plasticState(ph)%state(3_pInt*ns+2_pInt*nt+2_pInt*nr+s, of) = &
|
||||
sqrt(dot_product((plasticState(ph)%state(1:ns,of)+plasticState(ph)%state(ns+1_pInt:2_pInt*ns,of)),&
|
||||
constitutive_dislotwin_forestProjectionEdge(1:ns,s,instance)))/ &
|
||||
constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,instance)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+nr+1_pInt):(5_pInt*ns+2_pInt*nt+nr), of) = 0.0_pReal
|
||||
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+2_pInt*nr+1_pInt):(5_pInt*ns+2_pInt*nt+2_pInt*nr), of) = 0.0_pReal
|
||||
if (nt > 0_pInt .and. ns > 0_pInt) &
|
||||
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+nr+1):(5_pInt*ns+2_pInt*nt+nr), of) = &
|
||||
plasticState(ph)%state((4_pInt*ns+2_pInt*nt+2_pInt*nr+1):(5_pInt*ns+2_pInt*nt+2_pInt*nr), of) = &
|
||||
matmul(constitutive_dislotwin_interactionMatrix_SlipTwin(1:ns,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||||
!$OMP CRITICAL (evilmatmul)
|
||||
if (nt > 0_pInt) &
|
||||
plasticState(ph)%state((5_pInt*ns+2_pInt*nt+nr+1_pInt):(5_pInt*ns+3_pInt*nt+nr), of) = &
|
||||
plasticState(ph)%state((5_pInt*ns+2_pInt*nt+2_pInt*nr+1_pInt):(5_pInt*ns+3_pInt*nt+2_pInt*nr), of) = &
|
||||
matmul(constitutive_dislotwin_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||||
!$OMP END CRITICAL (evilmatmul)
|
||||
|
||||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||||
do s = 1_pInt,ns
|
||||
if (nt > 0_pInt) then
|
||||
plasticState(ph)%state(5_pInt*ns+3_pInt*nt+nr+s, of) = &
|
||||
plasticState(ph)%state(5_pInt*ns+3_pInt*nt+2_pInt*nr+s, of) = &
|
||||
constitutive_dislotwin_GrainSize(instance)/(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*&
|
||||
(plasticState(ph)%state(3_pInt*ns+2_pInt*nt+nr+s, of)+plasticState(ph)%state(4_pInt*ns+2_pInt*nt+nr+s, of)))
|
||||
(plasticState(ph)%state(3_pInt*ns+2_pInt*nt+2_pInt*nr+s, of) + &
|
||||
plasticState(ph)%state(4_pInt*ns+2_pInt*nt+2_pInt*nr+s, of)))
|
||||
else
|
||||
plasticState(ph)%state(5_pInt*ns+nr+s, of) = &
|
||||
plasticState(ph)%state(5_pInt*ns+2_pInt*nr+s, of) = &
|
||||
constitutive_dislotwin_GrainSize(instance)/&
|
||||
(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*(plasticState(ph)%state(3_pInt*ns+nr+s, of)))
|
||||
(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*(plasticState(ph)%state(3_pInt*ns+s, of)))
|
||||
endif
|
||||
enddo
|
||||
|
||||
!* mean free path between 2 obstacles seen by a growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+nr+t, of) = &
|
||||
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+2_pInt*nr+t, of) = &
|
||||
(constitutive_dislotwin_Cmfptwin(instance)*constitutive_dislotwin_GrainSize(instance))/&
|
||||
(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*plasticState(ph)%state(5_pInt*ns+2_pInt*nt+nr+t, of))
|
||||
(1.0_pReal+constitutive_dislotwin_GrainSize(instance)*plasticState(ph)%state(5_pInt*ns+2_pInt*nt+2_pInt*nr+t, of))
|
||||
|
||||
!* threshold stress for dislocation motion
|
||||
forall (s = 1_pInt:ns) &
|
||||
plasticState(ph)%state(6_pInt*ns+4_pInt*nt+nr+s, of) = &
|
||||
plasticState(ph)%state(6_pInt*ns+4_pInt*nt+2_pInt*nr+s, of) = &
|
||||
lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(s,instance)*&
|
||||
sqrt(dot_product((plasticState(ph)%state(1:ns, of)+plasticState(ph)%state(ns+1_pInt:2_pInt*ns, of)),&
|
||||
constitutive_dislotwin_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||||
|
||||
!* threshold stress for growing twin
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(7_pInt*ns+4_pInt*nt+nr+t, of) = &
|
||||
plasticState(ph)%state(7_pInt*ns+4_pInt*nt+2_pInt*nr+t, of) = &
|
||||
constitutive_dislotwin_Cthresholdtwin(instance)*&
|
||||
(sfe/(3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,instance))+&
|
||||
3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/&
|
||||
|
@ -1209,8 +1257,9 @@ subroutine constitutive_dislotwin_microstructure(temperature,ipc,ip,el)
|
|||
|
||||
!* final twin volume after growth
|
||||
forall (t = 1_pInt:nt) &
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+nr+t, of) = &
|
||||
(pi/4.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,instance)*plasticState(ph)%state(6*ns+3*nt+nr+t, of)**(2.0_pReal)
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+2_pInt*nr+t, of) = &
|
||||
(pi/4.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,instance)*&
|
||||
plasticState(ph)%state(6_pInt*ns+3_pInt*nt+2_pInt*nr+t, of)**(2.0_pReal)
|
||||
|
||||
!* equilibrium seperation of partial dislocations
|
||||
do t = 1_pInt,nt
|
||||
|
@ -1238,7 +1287,8 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
math_spectralDecompositionSym33, &
|
||||
math_tensorproduct, &
|
||||
math_symmetric33, &
|
||||
math_mul33x3
|
||||
math_mul33x3, &
|
||||
math_norm33
|
||||
use mesh, only: &
|
||||
mesh_NcpElems, &
|
||||
mesh_maxNips
|
||||
|
@ -1253,6 +1303,8 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
lattice_Sslip_v, &
|
||||
lattice_Stwin, &
|
||||
lattice_Stwin_v, &
|
||||
lattice_NItrans, &
|
||||
lattice_NItrans_v, &
|
||||
lattice_maxNslipFamily,&
|
||||
lattice_maxNtwinFamily, &
|
||||
lattice_maxNtransFamily, &
|
||||
|
@ -1272,12 +1324,14 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar
|
||||
|
||||
integer(pInt) :: instance,ph,of,ns,nt,nr,f,i,j,k,l,m,n,index_myFamily,s1,s2
|
||||
real(pReal) :: sumf,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0,Ndot0
|
||||
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0,Ndot0
|
||||
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
gdot_slip,dgdot_dtauslip,tau_slip
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
gdot_twin,dgdot_dtautwin,tau_twin
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtrans(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
nIdot_trans,dnIdot_dtautrans,tau_trans,f_trans,nI_trans
|
||||
real(pReal), dimension(6) :: gdot_sb,dgdot_dtausb,tau_sb
|
||||
real(pReal), dimension(3,3) :: eigVectors, sb_Smatrix
|
||||
real(pReal), dimension(3) :: eigValues, sb_s, sb_m
|
||||
|
@ -1312,6 +1366,10 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
!* Total twin volume fraction
|
||||
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(plasticState(ph)%state((3_pInt*ns+2_pInt*nt+1_pInt):(3_pInt*ns+2_pInt*nt+nr), of)) + &
|
||||
sum(plasticState(ph)%state((3_pInt*ns+2_pInt*nt+nr+1_pInt):(3_pInt*ns+2_pInt*nt+2_pInt*nr), of))
|
||||
|
||||
Lp = 0.0_pReal
|
||||
dLp_dTstar3333 = 0.0_pReal
|
||||
dLp_dTstar = 0.0_pReal
|
||||
|
@ -1329,12 +1387,12 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau_slip(j))- plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau_slip(j))- plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
|
@ -1345,7 +1403,7 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
constitutive_dislotwin_v0PerSlipSystem(j,instance)
|
||||
|
||||
!* Shear rates due to slip
|
||||
gdot_slip(j) = (1.0_pReal - sumf) * DotGamma0 &
|
||||
gdot_slip(j) = (1.0_pReal - sumf - sumftr) * DotGamma0 &
|
||||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** constitutive_dislotwin_qPerSlipFamily(f,instance)) &
|
||||
* sign(1.0_pReal,tau_slip(j))
|
||||
|
||||
|
@ -1440,7 +1498,8 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
|
||||
!* Stress ratios
|
||||
if (tau_twin(j) > tol_math_check) then
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+nr+j, of)/tau_twin(j))**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)/&
|
||||
tau_twin(j))**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
select case(lattice_structure(ph))
|
||||
case (LATTICE_fcc_ID)
|
||||
|
@ -1459,8 +1518,8 @@ subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperat
|
|||
Ndot0=constitutive_dislotwin_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
gdot_twin(j) = &
|
||||
(constitutive_dislotwin_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
plasticState(ph)%state(7*ns+5*nt+nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
(1.0_pReal-sumf-sumftr)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
plasticState(ph)%state(7*ns+5*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_rPerTwinFamily(f,instance))/tau_twin(j))*StressRatio_r
|
||||
endif
|
||||
|
||||
|
@ -1502,6 +1561,7 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
use lattice, only: &
|
||||
lattice_Sslip_v, &
|
||||
lattice_Stwin_v, &
|
||||
lattice_NItrans_v, &
|
||||
lattice_maxNslipFamily, &
|
||||
lattice_maxNtwinFamily, &
|
||||
lattice_maxNtransFamily, &
|
||||
|
@ -1528,13 +1588,15 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
integer(pInt) :: instance,ns,nt,nr,f,i,j,index_myFamily,s1,s2, &
|
||||
ph, &
|
||||
of
|
||||
real(pReal) :: sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,&
|
||||
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,&
|
||||
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
gdot_slip,tau_slip,DotRhoMultiplication,EdgeDipDistance,DotRhoEdgeEdgeAnnihilation,DotRhoEdgeDipAnnihilation,&
|
||||
ClimbVelocity,DotRhoEdgeDipClimb,DotRhoDipFormation
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
tau_twin
|
||||
real(pReal), dimension(constitutive_dislotwin_totalNtrans(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||||
tau_trans, f_trans, nI_trans
|
||||
|
||||
!* Shortened notation
|
||||
|
||||
|
@ -1549,6 +1611,10 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
sumf = sum(plasticState(ph)%state((3_pInt*ns+1_pInt):(3_pInt*ns+nt), of)) ! safe for nt == 0
|
||||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||||
|
||||
!* Total transformed volume fraction
|
||||
sumftr = sum(plasticState(ph)%state((3_pInt*ns+2_pInt*nt+1_pInt):(3_pInt*ns+2_pInt*nt+nr), of)) + &
|
||||
sum(plasticState(ph)%state((3_pInt*ns+2_pInt*nt+nr+1_pInt):(3_pInt*ns+2_pInt*nt+2_pInt*nr), of))
|
||||
|
||||
!* Dislocation density evolution
|
||||
gdot_slip = 0.0_pReal
|
||||
j = 0_pInt
|
||||
|
@ -1561,12 +1627,12 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau_slip(j))-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
!* Boltzmann ratio
|
||||
|
@ -1583,7 +1649,7 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Multiplication
|
||||
DotRhoMultiplication(j) = abs(gdot_slip(j))/&
|
||||
(constitutive_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||||
plasticState(ph)%state(5*ns+3*nt+nr+j, of))
|
||||
plasticState(ph)%state(5*ns+3*nt+2*nr+j, of))
|
||||
!* Dipole formation
|
||||
EdgeDipMinDistance = &
|
||||
constitutive_dislotwin_CEdgeDipMinDistance(instance)*constitutive_dislotwin_burgersPerSlipSystem(j,instance)
|
||||
|
@ -1593,8 +1659,8 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
EdgeDipDistance(j) = &
|
||||
(3.0_pReal*lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(tau_slip(j)))
|
||||
if (EdgeDipDistance(j)>plasticState(ph)%state(5*ns+3*nt+nr+j, of)) &
|
||||
EdgeDipDistance(j)=plasticState(ph)%state(5*ns+3*nt+nr+j, of)
|
||||
if (EdgeDipDistance(j)>plasticState(ph)%state(5*ns+3*nt+2*nr+j, of)) &
|
||||
EdgeDipDistance(j)=plasticState(ph)%state(5*ns+3*nt+2*nr+j, of)
|
||||
if (EdgeDipDistance(j)<EdgeDipMinDistance) EdgeDipDistance(j)=EdgeDipMinDistance
|
||||
DotRhoDipFormation(j) = &
|
||||
((2.0_pReal*EdgeDipDistance(j))/constitutive_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||||
|
@ -1651,7 +1717,8 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if (tau_twin(j) > tol_math_check) then
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+nr+j, of)/tau_twin(j))**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
StressRatio_r = (plasticState(ph)%state(7*ns+4*nt+2*nr+j, of)/&
|
||||
tau_twin(j))**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
!* Shear rates and their derivatives due to twin
|
||||
|
||||
select case(lattice_structure(ph))
|
||||
|
@ -1671,8 +1738,8 @@ subroutine constitutive_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
|||
Ndot0=constitutive_dislotwin_Ndot0PerTwinSystem(j,instance)
|
||||
end select
|
||||
plasticState(ph)%dotState(3_pInt*ns+j, of) = &
|
||||
(constitutive_dislotwin_MaxTwinFraction(instance)-sumf)*&
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
(1.0_pReal-sumf-sumftr)*&
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
!* Dotstate for accumulated shear due to twin
|
||||
plasticState(ph)%dotState(3_pInt*ns+nt+j, of) = plasticState(ph)%dotState(3_pInt*ns+j, of) * &
|
||||
lattice_sheartwin(index_myfamily+i,ph)
|
||||
|
@ -1783,13 +1850,13 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -1816,7 +1883,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + ns
|
||||
case (mfp_slip_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+ns) =&
|
||||
plasticState(ph)%state((5_pInt*ns+3_pInt*nt+nr+1_pInt):(6_pInt*ns+3_pInt*nt+nr), of)
|
||||
plasticState(ph)%state((5_pInt*ns+3_pInt*nt+2*nr+1_pInt):(6_pInt*ns+3_pInt*nt+2*nr), of)
|
||||
c = c + ns
|
||||
case (resolved_stress_slip_ID)
|
||||
j = 0_pInt
|
||||
|
@ -1830,7 +1897,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + ns
|
||||
case (threshold_stress_slip_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+ns) = &
|
||||
plasticState(ph)%state((6_pInt*ns+4_pInt*nt+nr+1_pInt):(7_pInt*ns+4_pInt*nt+nr), of)
|
||||
plasticState(ph)%state((6_pInt*ns+4_pInt*nt+2*nr+1_pInt):(7_pInt*ns+4_pInt*nt+2*nr), of)
|
||||
c = c + ns
|
||||
case (edge_dipole_distance_ID)
|
||||
j = 0_pInt
|
||||
|
@ -1842,9 +1909,9 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
(3.0_pReal*lattice_mu(ph)*constitutive_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||||
(16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))))
|
||||
constitutive_dislotwin_postResults(c+j)=min(constitutive_dislotwin_postResults(c+j),&
|
||||
plasticState(ph)%state(5*ns+3*nt+nr+j, of))
|
||||
plasticState(ph)%state(5*ns+3*nt+2*nr+j, of))
|
||||
! constitutive_dislotwin_postResults(c+j)=max(constitutive_dislotwin_postResults(c+j),&
|
||||
! plasticState(ph)%state(4*ns+2*nt+nr+j, of))
|
||||
! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of))
|
||||
enddo; enddo
|
||||
c = c + ns
|
||||
case (resolved_stress_shearband_ID)
|
||||
|
@ -1892,13 +1959,13 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
@ -1926,7 +1993,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
!* Resolved shear stress on twin system
|
||||
tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||||
!* Stress ratios
|
||||
StressRatio_r = (plasticState(ph)%state(7_pInt*ns+4_pInt*nt+nr+j, of)/ &
|
||||
StressRatio_r = (plasticState(ph)%state(7_pInt*ns+4_pInt*nt+2*nr+j, of)/ &
|
||||
tau)**constitutive_dislotwin_rPerTwinFamily(f,instance)
|
||||
|
||||
!* Shear rates due to twin
|
||||
|
@ -1950,7 +2017,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
end select
|
||||
constitutive_dislotwin_postResults(c+j) = &
|
||||
(constitutive_dislotwin_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
plasticState(ph)%state(7_pInt*ns+5_pInt*nt+2*nr+j, of)*Ndot0*exp(-StressRatio_r)
|
||||
endif
|
||||
|
||||
enddo ; enddo
|
||||
|
@ -1962,7 +2029,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + nt
|
||||
case (mfp_twin_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
||||
state((6_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+4_pInt*nt), of)
|
||||
state((6_pInt*ns+3_pInt*nt+2_pInt*nr+1_pInt):(6_pInt*ns+4_pInt*nt+2_pInt*nr), of)
|
||||
c = c + nt
|
||||
case (resolved_stress_twin_ID)
|
||||
if (nt > 0_pInt) then
|
||||
|
@ -1977,7 +2044,7 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
c = c + nt
|
||||
case (threshold_stress_twin_ID)
|
||||
constitutive_dislotwin_postResults(c+1_pInt:c+nt) = plasticState(ph)% &
|
||||
state((7_pInt*ns+4_pInt*nt+1_pInt):(7_pInt*ns+5_pInt*nt), of)
|
||||
state((7_pInt*ns+4_pInt*nt+2_pInt*nr+1_pInt):(7_pInt*ns+5_pInt*nt+2_pInt*nr), of)
|
||||
c = c + nt
|
||||
case (stress_exponent_ID)
|
||||
j = 0_pInt
|
||||
|
@ -1988,13 +2055,13 @@ function constitutive_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
|||
|
||||
!* Resolved shear stress on slip system
|
||||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of)) > tol_math_check) then
|
||||
if((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of)) > tol_math_check) then
|
||||
!* Stress ratios
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_p = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**constitutive_dislotwin_pPerSlipFamily(f,instance)
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+nr+j, of))/&
|
||||
StressRatio_pminus1 = ((abs(tau)-plasticState(ph)%state(6*ns+4*nt+2*nr+j, of))/&
|
||||
(constitutive_dislotwin_SolidSolutionStrength(instance)+&
|
||||
constitutive_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||||
**(constitutive_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||||
|
|
Loading…
Reference in New Issue