removed compiler warnings about conversion and floating point comparison

This commit is contained in:
Martin Diehl 2016-05-27 11:46:34 +02:00
parent a58e85e96d
commit 8d285e4190
19 changed files with 139 additions and 145 deletions

View File

@ -251,8 +251,6 @@ subroutine CPFEM_general(age, dt)
crystallite_Tstar0_v, & crystallite_Tstar0_v, &
crystallite_Tstar_v crystallite_Tstar_v
use homogenization, only: & use homogenization, only: &
materialpoint_F, &
materialpoint_F0, &
materialpoint_stressAndItsTangent, & materialpoint_stressAndItsTangent, &
materialpoint_postResults materialpoint_postResults
use IO, only: & use IO, only: &

View File

@ -604,8 +604,6 @@ subroutine constitutive_LiAndItsTangent(Li, dLi_dTstar3333, dLi_dFi3333, Tstar_v
use material, only: & use material, only: &
phase_plasticity, & phase_plasticity, &
material_phase, & material_phase, &
material_homog, &
phaseAt, phasememberAt, &
phase_kinematics, & phase_kinematics, &
phase_Nkinematics, & phase_Nkinematics, &
PLASTICITY_isotropic_ID, & PLASTICITY_isotropic_ID, &

View File

@ -197,8 +197,6 @@ subroutine crystallite_init
nMax, & !< maximum number of ip neighbors nMax, & !< maximum number of ip neighbors
myNcomponents, & !< number of components at current IP myNcomponents, & !< number of components at current IP
section = 0_pInt, & section = 0_pInt, &
j, &
p, &
mySize mySize
character(len=65536) :: & character(len=65536) :: &
@ -511,7 +509,8 @@ end subroutine crystallite_init
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine crystallite_stressAndItsTangent(updateJaco) subroutine crystallite_stressAndItsTangent(updateJaco)
use prec, only: & use prec, only: &
tol_math_check tol_math_check, &
dNeq
use numerics, only: & use numerics, only: &
subStepMinCryst, & subStepMinCryst, &
subStepSizeCryst, & subStepSizeCryst, &
@ -803,7 +802,7 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
endif endif
else else
subFracIntermediate = maxval(crystallite_subFrac, mask=.not.crystallite_localPlasticity) subFracIntermediate = maxval(crystallite_subFrac, mask=.not.crystallite_localPlasticity)
if (abs(subFracIntermediate) > tiny(0.0_pReal)) then if (dNeq(subFracIntermediate,0.0_pReal)) then
crystallite_neighborEnforcedCutback = .false. ! look for ips that require a cutback because of a nonconverged neighbor crystallite_neighborEnforcedCutback = .false. ! look for ips that require a cutback because of a nonconverged neighbor
!$OMP PARALLEL !$OMP PARALLEL
!$OMP DO PRIVATE(neighboring_e,neighboring_i) !$OMP DO PRIVATE(neighboring_e,neighboring_i)
@ -3352,7 +3351,8 @@ end subroutine crystallite_integrateStateFPI
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
logical function crystallite_stateJump(ipc,ip,el) logical function crystallite_stateJump(ipc,ip,el)
use prec, only: & use prec, only: &
prec_isNaN prec_isNaN, &
dNeq
use debug, only: & use debug, only: &
debug_level, & debug_level, &
debug_crystallite, & debug_crystallite, &
@ -3404,7 +3404,7 @@ logical function crystallite_stateJump(ipc,ip,el)
enddo enddo
#ifndef _OPENMP #ifndef _OPENMP
if (any(plasticState(p)%deltaState(1:mySizePlasticDeltaState,c) /= 0.0_pReal) & if (any(dNeq(plasticState(p)%deltaState(1:mySizePlasticDeltaState,c),0.0_pReal)) &
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
@ -3459,7 +3459,8 @@ logical function crystallite_integrateStress(&
) )
use prec, only: pLongInt, & use prec, only: pLongInt, &
tol_math_check, & tol_math_check, &
prec_isNaN prec_isNaN, &
dEq
use numerics, only: nStress, & use numerics, only: nStress, &
aTol_crystalliteStress, & aTol_crystalliteStress, &
rTol_crystalliteStress, & rTol_crystalliteStress, &
@ -3607,7 +3608,7 @@ logical function crystallite_integrateStress(&
!* inversion of Fp_current... !* inversion of Fp_current...
invFp_current = math_inv33(Fp_current) invFp_current = math_inv33(Fp_current)
if (all(abs(invFp_current) <= tiny(0.0_pReal))) then ! math_inv33 returns zero when failed, avoid floating point comparison failedInversionFp: if (all(dEq(invFp_current,0.0_pReal))) then
#ifndef _OPENMP #ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el (elFE) ip g ',& write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el (elFE) ip g ',&
@ -3617,13 +3618,12 @@ logical function crystallite_integrateStress(&
endif endif
#endif #endif
return return
endif endif failedInversionFp
A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
!* inversion of Fi_current... !* inversion of Fi_current...
invFi_current = math_inv33(Fi_current) failedInversionFi: if (all(dEq(invFi_current,0.0_pReal))) then
if (all(abs(invFi_current) <= tiny(0.0_pReal))) then ! math_inv33 returns zero when failed, avoid floating point comparison
#ifndef _OPENMP #ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fi_current at el (elFE) ip ipc ',& write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fi_current at el (elFE) ip ipc ',&
@ -3633,7 +3633,7 @@ logical function crystallite_integrateStress(&
endif endif
#endif #endif
return return
endif endif failedInversionFi
!* start LpLoop with normal step length !* start LpLoop with normal step length
@ -3883,7 +3883,7 @@ logical function crystallite_integrateStress(&
invFp_new = math_mul33x33(invFp_current,B) invFp_new = math_mul33x33(invFp_current,B)
invFp_new = invFp_new / math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det invFp_new = invFp_new / math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
Fp_new = math_inv33(invFp_new) Fp_new = math_inv33(invFp_new)
if (all(abs(Fp_new)<= tiny(0.0_pReal))) then ! math_inv33 returns zero when failed, avoid floating point comparison failedInversionFp2: if (all(dEq(invFp_new,0.0_pReal))) then
#ifndef _OPENMP #ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el ip ipc ',& write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el ip ipc ',&
@ -3895,7 +3895,7 @@ logical function crystallite_integrateStress(&
endif endif
#endif #endif
return return
endif endif failedInversionFp2
Fe_new = math_mul33x33(math_mul33x33(Fg_new,invFp_new),invFi_new) ! calc resulting Fe Fe_new = math_mul33x33(math_mul33x33(Fg_new,invFp_new),invFi_new) ! calc resulting Fe
!* calculate 1st Piola-Kirchhoff stress !* calculate 1st Piola-Kirchhoff stress
@ -4116,7 +4116,7 @@ function crystallite_postResults(ipc, ip, el)
mySize = 1_pInt mySize = 1_pInt
detF = math_det33(crystallite_partionedF(1:3,1:3,ipc,ip,el)) ! V_current = det(F) * V_reference detF = math_det33(crystallite_partionedF(1:3,1:3,ipc,ip,el)) ! V_current = det(F) * V_reference
crystallite_postResults(c+1) = detF * mesh_ipVolume(ip,el) & crystallite_postResults(c+1) = detF * mesh_ipVolume(ip,el) &
/ homogenization_Ngrains(mesh_element(3,el)) ! grain volume (not fraction but absolute) / real(homogenization_Ngrains(mesh_element(3,el)),pReal) ! grain volume (not fraction but absolute)
case (orientation_ID) case (orientation_ID)
mySize = 4_pInt mySize = 4_pInt
crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,ipc,ip,el) ! grain orientation as quaternion crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,ipc,ip,el) ! grain orientation as quaternion

View File

@ -223,7 +223,7 @@ subroutine damage_local_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el
use material, only: & use material, only: &
homogenization_Ngrains, & homogenization_Ngrains, &
mappingHomogenization, & mappingHomogenization, &
phaseAt, phasememberAt, & phaseAt, &
phase_source, & phase_source, &
phase_Nsources, & phase_Nsources, &
SOURCE_damage_isoBrittle_ID, & SOURCE_damage_isoBrittle_ID, &
@ -280,8 +280,8 @@ subroutine damage_local_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el
enddo enddo
enddo enddo
phiDot = phiDot/homogenization_Ngrains(mappingHomogenization(2,ip,el)) phiDot = phiDot/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
dPhiDot_dPhi = dPhiDot_dPhi/homogenization_Ngrains(mappingHomogenization(2,ip,el)) dPhiDot_dPhi = dPhiDot_dPhi/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
end subroutine damage_local_getSourceAndItsTangent end subroutine damage_local_getSourceAndItsTangent

View File

@ -184,7 +184,7 @@ subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip,
use material, only: & use material, only: &
homogenization_Ngrains, & homogenization_Ngrains, &
mappingHomogenization, & mappingHomogenization, &
phaseAt, phasememberAt, & phaseAt, &
phase_source, & phase_source, &
phase_Nsources, & phase_Nsources, &
SOURCE_damage_isoBrittle_ID, & SOURCE_damage_isoBrittle_ID, &
@ -241,8 +241,8 @@ subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip,
enddo enddo
enddo enddo
phiDot = phiDot/homogenization_Ngrains(mappingHomogenization(2,ip,el)) phiDot = phiDot/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
dPhiDot_dPhi = dPhiDot_dPhi/homogenization_Ngrains(mappingHomogenization(2,ip,el)) dPhiDot_dPhi = dPhiDot_dPhi/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
end subroutine damage_nonlocal_getSourceAndItsTangent end subroutine damage_nonlocal_getSourceAndItsTangent
@ -279,9 +279,7 @@ function damage_nonlocal_getDiffusion33(ip,el)
enddo enddo
damage_nonlocal_getDiffusion33 = & damage_nonlocal_getDiffusion33 = &
charLength*charLength* & charLength**2_pInt*damage_nonlocal_getDiffusion33/real(homogenization_Ngrains(homog),pReal)
damage_nonlocal_getDiffusion33/ &
homogenization_Ngrains(homog)
end function damage_nonlocal_getDiffusion33 end function damage_nonlocal_getDiffusion33
@ -310,7 +308,8 @@ real(pReal) function damage_nonlocal_getMobility(ip,el)
damage_nonlocal_getMobility = damage_nonlocal_getMobility + lattice_DamageMobility(material_phase(ipc,ip,el)) damage_nonlocal_getMobility = damage_nonlocal_getMobility + lattice_DamageMobility(material_phase(ipc,ip,el))
enddo enddo
damage_nonlocal_getMobility = damage_nonlocal_getMobility /homogenization_Ngrains(mesh_element(3,el)) damage_nonlocal_getMobility = damage_nonlocal_getMobility/&
real(homogenization_Ngrains(mesh_element(3,el)),pReal)
end function damage_nonlocal_getMobility end function damage_nonlocal_getMobility

View File

@ -46,10 +46,10 @@ module debug
integer(pInt),protected, dimension(debug_maxNtype+2_pInt), public :: & ! specific ones, and 2 for "all" and "other" integer(pInt),protected, dimension(debug_maxNtype+2_pInt), public :: & ! specific ones, and 2 for "all" and "other"
debug_level = 0_pInt debug_level = 0_pInt
integer(pInt), public :: & integer(pLongInt), public :: &
debug_cumLpCalls = 0_pInt, & !< total number of calls to LpAndItsTangent debug_cumLpCalls = 0_pLongInt, & !< total number of calls to LpAndItsTangent
debug_cumDeltaStateCalls = 0_pInt, & !< total number of calls to deltaState debug_cumDeltaStateCalls = 0_pLongInt, & !< total number of calls to deltaState
debug_cumDotStateCalls = 0_pInt !< total number of calls to dotState debug_cumDotStateCalls = 0_pLongInt !< total number of calls to dotState
integer(pInt), protected, public :: & integer(pInt), protected, public :: &
debug_e = 1_pInt, & debug_e = 1_pInt, &
@ -67,6 +67,7 @@ module debug
debug_jacobianMaxLocation = 0_pInt, & debug_jacobianMaxLocation = 0_pInt, &
debug_jacobianMinLocation = 0_pInt debug_jacobianMinLocation = 0_pInt
integer(pInt), dimension(:), allocatable, public :: & integer(pInt), dimension(:), allocatable, public :: &
debug_CrystalliteLoopDistribution, & !< distribution of crystallite cutbacks debug_CrystalliteLoopDistribution, & !< distribution of crystallite cutbacks
debug_MaterialpointStateLoopDistribution, & debug_MaterialpointStateLoopDistribution, &

View File

@ -77,7 +77,6 @@ subroutine kinematics_thermal_expansion_init(fileUnit)
integer(pInt) :: maxNinstance,phase,instance,kinematics integer(pInt) :: maxNinstance,phase,instance,kinematics
character(len=65536) :: & character(len=65536) :: &
tag = '', & tag = '', &
output = '', &
line = '' line = ''
mainProcess: if (worldrank == 0) then mainProcess: if (worldrank == 0) then

View File

@ -1232,6 +1232,8 @@ end subroutine material_parseTexture
!! calculates the volume of the grains and deals with texture components and hybridIA !! calculates the volume of the grains and deals with texture components and hybridIA
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine material_populateGrains subroutine material_populateGrains
use prec, only: &
dEq
use math, only: & use math, only: &
math_RtoEuler, & math_RtoEuler, &
math_EulerToR, & math_EulerToR, &
@ -1451,7 +1453,7 @@ subroutine material_populateGrains
texture_Fiber( 5,t,textureID)) texture_Fiber( 5,t,textureID))
enddo enddo
constituentGrain = & constituentGrain = &
constituentGrain + int(myNorientations*texture_fiber(6,t,textureID),pInt) ! advance counter for grains of current constituent constituentGrain + int(real(myNorientations,pReal)*texture_fiber(6,t,textureID),pInt) ! advance counter for grains of current constituent
enddo fiber enddo fiber
random: do constituentGrain = constituentGrain+1_pInt,myNorientations ! fill remainder with random random: do constituentGrain = constituentGrain+1_pInt,myNorientations ! fill remainder with random
@ -1462,7 +1464,7 @@ subroutine material_populateGrains
else else
orientationOfGrain(1:3,grain+1_pInt:grain+myNorientations) = & orientationOfGrain(1:3,grain+1_pInt:grain+myNorientations) = &
IO_hybridIA(myNorientations,texture_ODFfile(textureID)) IO_hybridIA(myNorientations,texture_ODFfile(textureID))
if (all(orientationOfGrain(1:3,grain+1_pInt) == -1.0_pReal)) call IO_error(156_pInt) if (all(dEq(orientationOfGrain(1:3,grain+1_pInt),-1.0_pReal))) call IO_error(156_pInt)
endif endif
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
@ -1501,7 +1503,7 @@ subroutine material_populateGrains
do j = 1_pInt,NgrainsOfConstituent(i)-1_pInt ! walk thru grains of current constituent do j = 1_pInt,NgrainsOfConstituent(i)-1_pInt ! walk thru grains of current constituent
call random_number(rnd) call random_number(rnd)
t = nint(rnd*(NgrainsOfConstituent(i)-j)+j+0.5_pReal,pInt) ! select a grain in remaining list t = nint(rnd*real(NgrainsOfConstituent(i)-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! select a grain in remaining list
m = phaseOfGrain(grain+t) ! exchange current with random m = phaseOfGrain(grain+t) ! exchange current with random
phaseOfGrain(grain+t) = phaseOfGrain(grain+j) phaseOfGrain(grain+t) = phaseOfGrain(grain+j)
phaseOfGrain(grain+j) = m phaseOfGrain(grain+j) = m
@ -1539,7 +1541,7 @@ subroutine material_populateGrains
randomOrder = math_range(microstructure_maxNconstituents) ! start out with ordered sequence of constituents randomOrder = math_range(microstructure_maxNconstituents) ! start out with ordered sequence of constituents
call random_number(rndArray) ! as many rnd numbers as (max) constituents call random_number(rndArray) ! as many rnd numbers as (max) constituents
do j = 1_pInt, myNconstituents - 1_pInt ! loop over constituents ... do j = 1_pInt, myNconstituents - 1_pInt ! loop over constituents ...
r = nint(rndArray(j)*(myNconstituents-j)+j+0.5_pReal,pInt) ! ... select one in remaining list r = nint(rndArray(j)*real(myNconstituents-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! ... select one in remaining list
c = randomOrder(r) ! ... call it "c" c = randomOrder(r) ! ... call it "c"
randomOrder(r) = randomOrder(j) ! ... and exchange with present position in constituent list randomOrder(r) = randomOrder(j) ! ... and exchange with present position in constituent list
grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population

View File

@ -723,6 +723,8 @@ end function math_transpose33
! returns all zeroes if not possible, i.e. if det close to zero ! returns all zeroes if not possible, i.e. if det close to zero
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
pure function math_inv33(A) pure function math_inv33(A)
use prec, only: &
dNeq
implicit none implicit none
real(pReal),dimension(3,3),intent(in) :: A real(pReal),dimension(3,3),intent(in) :: A
@ -735,7 +737,7 @@ pure function math_inv33(A)
DetA = A(1,1) * math_inv33(1,1) + A(1,2) * math_inv33(2,1) + A(1,3) * math_inv33(3,1) DetA = A(1,1) * math_inv33(1,1) + A(1,2) * math_inv33(2,1) + A(1,3) * math_inv33(3,1)
if (abs(DetA) > tiny(DetA)) then ! use a real threshold here if (dNeq(DetA,0.0_pReal)) then
math_inv33(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2) math_inv33(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
math_inv33(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1) math_inv33(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1)
math_inv33(3,2) = -A(1,1) * A(3,2) + A(1,2) * A(3,1) math_inv33(3,2) = -A(1,1) * A(3,2) + A(1,2) * A(3,1)

View File

@ -199,6 +199,8 @@ contains
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
subroutine plastic_dislotwin_init(fileUnit) subroutine plastic_dislotwin_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
dNeq
use debug, only: & use debug, only: &
debug_level,& debug_level,&
debug_constitutive,& debug_constitutive,&
@ -773,8 +775,8 @@ subroutine plastic_dislotwin_init(fileUnit)
if (plastic_dislotwin_sbVelocity(instance) > 0.0_pReal .and. & if (plastic_dislotwin_sbVelocity(instance) > 0.0_pReal .and. &
plastic_dislotwin_pShearBand(instance) <= 0.0_pReal) & plastic_dislotwin_pShearBand(instance) <= 0.0_pReal) &
call IO_error(211_pInt,el=instance,ext_msg='pShearBand ('//PLASTICITY_DISLOTWIN_label//')') call IO_error(211_pInt,el=instance,ext_msg='pShearBand ('//PLASTICITY_DISLOTWIN_label//')')
if (abs(plastic_dislotwin_dipoleFormationFactor(instance)) > tiny(0.0_pReal) .and. & if (dNeq(plastic_dislotwin_dipoleFormationFactor(instance), 0.0_pReal) .and. &
plastic_dislotwin_dipoleFormationFactor(instance) /= 1.0_pReal) & dNeq(plastic_dislotwin_dipoleFormationFactor(instance), 1.0_pReal)) &
call IO_error(211_pInt,el=instance,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOTWIN_label//')') call IO_error(211_pInt,el=instance,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOTWIN_label//')')
if (plastic_dislotwin_sbVelocity(instance) > 0.0_pReal .and. & if (plastic_dislotwin_sbVelocity(instance) > 0.0_pReal .and. &
plastic_dislotwin_qShearBand(instance) <= 0.0_pReal) & plastic_dislotwin_qShearBand(instance) <= 0.0_pReal) &

View File

@ -2382,7 +2382,8 @@ end subroutine plastic_nonlocal_deltaState
subroutine plastic_nonlocal_dotState(Tstar_v, Fe, Fp, Temperature, & subroutine plastic_nonlocal_dotState(Tstar_v, Fe, Fp, Temperature, &
timestep,subfrac, ip,el) timestep,subfrac, ip,el)
use prec, only: DAMASK_NaN use prec, only: DAMASK_NaN, &
dNeq
use numerics, only: numerics_integrationMode, & use numerics, only: numerics_integrationMode, &
numerics_timeSyncing numerics_timeSyncing
use IO, only: IO_error use IO, only: IO_error
@ -2760,8 +2761,7 @@ if (.not. phase_localPlasticity(material_phase(1_pInt,ip,el))) then
endif endif
if (considerEnteringFlux) then if (considerEnteringFlux) then
if(numerics_timeSyncing .and. (subfrac(1_pInt,neighbor_ip,neighbor_el) /= subfrac(1_pInt,ip,el))) & if(numerics_timeSyncing .and. (dNeq(subfrac(1,neighbor_ip,neighbor_el),subfrac(1,ip,el)))) then ! for timesyncing: in case of a timestep at the interface we have to use "state0" to make sure that fluxes n both sides are equal
then ! for timesyncing: in case of a timestep at the interface we have to use "state0" to make sure that fluxes n both sides are equal
forall (s = 1:ns, t = 1_pInt:4_pInt) forall (s = 1:ns, t = 1_pInt:4_pInt)
neighbor_v(s,t) = plasticState(np)%state0(iV (s,t,neighbor_instance),no) neighbor_v(s,t) = plasticState(np)%state0(iV (s,t,neighbor_instance),no)
@ -3078,13 +3078,11 @@ slipDirection(1:3,1:ns) = lattice_sd(1:3, slipSystemLattice(1:ns,instance), ph)
!*** start out fully compatible !*** start out fully compatible
my_compatibility = 0.0_pReal my_compatibility = 0.0_pReal
forall(s1 = 1_pInt:ns) & forall(s1 = 1_pInt:ns) my_compatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
my_compatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
!*** Loop thrugh neighbors and check whether there is any my_compatibility. !*** Loop thrugh neighbors and check whether there is any my_compatibility.
do n = 1_pInt,Nneighbors neighbors: do n = 1_pInt,Nneighbors
neighbor_e = mesh_ipNeighborhood(1,n,i,e) neighbor_e = mesh_ipNeighborhood(1,n,i,e)
neighbor_i = mesh_ipNeighborhood(2,n,i,e) neighbor_i = mesh_ipNeighborhood(2,n,i,e)
@ -3093,8 +3091,7 @@ do n = 1_pInt,Nneighbors
!* Set surface transmissivity to the value specified in the material.config !* Set surface transmissivity to the value specified in the material.config
if (neighbor_e <= 0_pInt .or. neighbor_i <= 0_pInt) then if (neighbor_e <= 0_pInt .or. neighbor_i <= 0_pInt) then
forall(s1 = 1_pInt:ns) & forall(s1 = 1_pInt:ns) my_compatibility(1:2,s1,s1,n) = sqrt(surfaceTransmissivity(instance))
my_compatibility(1:2,s1,s1,n) = sqrt(surfaceTransmissivity(instance))
cycle cycle
endif endif
@ -3107,10 +3104,8 @@ do n = 1_pInt,Nneighbors
neighbor_phase = material_phase(1,neighbor_i,neighbor_e) neighbor_phase = material_phase(1,neighbor_i,neighbor_e)
if (neighbor_phase /= ph) then if (neighbor_phase /= ph) then
if (.not. phase_localPlasticity(neighbor_phase) .and. .not. phase_localPlasticity(ph)) then if (.not. phase_localPlasticity(neighbor_phase) .and. .not. phase_localPlasticity(ph))&
forall(s1 = 1_pInt:ns) & forall(s1 = 1_pInt:ns) my_compatibility(1:2,s1,s1,n) = 0.0_pReal
my_compatibility(1:2,s1,s1,n) = 0.0_pReal ! = sqrt(0.0)
endif
cycle cycle
endif endif
@ -3141,33 +3136,33 @@ do n = 1_pInt,Nneighbors
else else
absoluteMisorientation = lattice_qDisorientation(orientation(1:4,1,i,e), & absoluteMisorientation = lattice_qDisorientation(orientation(1:4,1,i,e), &
orientation(1:4,1,neighbor_i,neighbor_e)) ! no symmetry orientation(1:4,1,neighbor_i,neighbor_e)) ! no symmetry
do s1 = 1_pInt,ns ! my slip systems mySlipSystems: do s1 = 1_pInt,ns
do s2 = 1_pInt,ns ! my neighbor's slip systems neighborSlipSystems: do s2 = 1_pInt,ns
my_compatibility(1,s2,s1,n) = math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2))) & my_compatibility(1,s2,s1,n) = math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2)))) * abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
my_compatibility(2,s2,s1,n) = abs(math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2)))) & my_compatibility(2,s2,s1,n) = abs(math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2)))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2)))) * abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
enddo enddo neighborSlipSystems
my_compatibilitySum = 0.0_pReal my_compatibilitySum = 0.0_pReal
belowThreshold = .true. belowThreshold = .true.
do while (my_compatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns))) do while (my_compatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns)))
thresholdValue = maxval(my_compatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive thresholdValue = maxval(my_compatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive
nThresholdValues = real(count(my_compatibility(2,1:ns,s1,n) == thresholdValue),pReal) nThresholdValues = real(count(my_compatibility(2,1:ns,s1,n) >= thresholdValue),pReal)
where (my_compatibility(2,1:ns,s1,n) >= thresholdValue) & where (my_compatibility(2,1:ns,s1,n) >= thresholdValue) &
belowThreshold(1:ns) = .false. belowThreshold(1:ns) = .false.
if (my_compatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) & if (my_compatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) &
where (abs(my_compatibility(1:2,1:ns,s1,n)) == thresholdValue) & ! MD: rather check below threshold? where (abs(my_compatibility(1:2,1:ns,s1,n)) >= thresholdValue) & ! MD: rather check below threshold?
my_compatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - my_compatibilitySum) & my_compatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - my_compatibilitySum) &
/ nThresholdValues, my_compatibility(1:2,1:ns,s1,n)) / nThresholdValues, my_compatibility(1:2,1:ns,s1,n))
my_compatibilitySum = my_compatibilitySum + nThresholdValues * thresholdValue my_compatibilitySum = my_compatibilitySum + nThresholdValues * thresholdValue
enddo enddo
where (belowThreshold(1:ns)) my_compatibility(1,1:ns,s1,n) = 0.0_pReal where (belowThreshold(1:ns)) my_compatibility(1,1:ns,s1,n) = 0.0_pReal
where (belowThreshold(1:ns)) my_compatibility(2,1:ns,s1,n) = 0.0_pReal where (belowThreshold(1:ns)) my_compatibility(2,1:ns,s1,n) = 0.0_pReal
enddo ! my slip systems cycle enddo mySlipSystems
endif endif
enddo ! neighbor cycle enddo neighbors
compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = my_compatibility compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = my_compatibility

View File

@ -873,7 +873,7 @@ subroutine plastic_phenoplus_microstructure(orientation,ipc,ip,el)
ENDDO LOOPFINDNEISHEAR ENDDO LOOPFINDNEISHEAR
!***calculate the average accumulative shear and use it as cutoff !***calculate the average accumulative shear and use it as cutoff
avg_acshear_ne = SUM(ne_acshear)/ns avg_acshear_ne = sum(ne_acshear)/real(ns,pReal)
!*** !***
IF (ph==neighbor_ph) THEN IF (ph==neighbor_ph) THEN

View File

@ -210,8 +210,7 @@ function porosity_phasefield_getFormationEnergy(ip,el)
enddo enddo
porosity_phasefield_getFormationEnergy = & porosity_phasefield_getFormationEnergy = &
porosity_phasefield_getFormationEnergy/ & porosity_phasefield_getFormationEnergy/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function porosity_phasefield_getFormationEnergy end function porosity_phasefield_getFormationEnergy
@ -243,8 +242,7 @@ function porosity_phasefield_getSurfaceEnergy(ip,el)
enddo enddo
porosity_phasefield_getSurfaceEnergy = & porosity_phasefield_getSurfaceEnergy = &
porosity_phasefield_getSurfaceEnergy/ & porosity_phasefield_getSurfaceEnergy/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function porosity_phasefield_getSurfaceEnergy end function porosity_phasefield_getSurfaceEnergy
@ -308,7 +306,7 @@ subroutine porosity_phasefield_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi,
enddo enddo
W_e = W_e + sum(abs(strain*math_mul66x6(C,strain))) W_e = W_e + sum(abs(strain*math_mul66x6(C,strain)))
enddo enddo
W_e = W_e/homogenization_Ngrains(homog) W_e = W_e/real(homogenization_Ngrains(homog),pReal)
phiDot = 2.0_pReal*(1.0_pReal - phi)*(1.0_pReal - Cv)*(1.0_pReal - Cv) - & phiDot = 2.0_pReal*(1.0_pReal - phi)*(1.0_pReal - Cv)*(1.0_pReal - Cv) - &
2.0_pReal*phi*(W_e + Cv*porosity_phasefield_getFormationEnergy(ip,el))/ & 2.0_pReal*phi*(W_e + Cv*porosity_phasefield_getFormationEnergy(ip,el))/ &
@ -350,8 +348,7 @@ function porosity_phasefield_getDiffusion33(ip,el)
enddo enddo
porosity_phasefield_getDiffusion33 = & porosity_phasefield_getDiffusion33 = &
porosity_phasefield_getDiffusion33/ & porosity_phasefield_getDiffusion33/real(homogenization_Ngrains(homog),pReal)
homogenization_Ngrains(homog)
end function porosity_phasefield_getDiffusion33 end function porosity_phasefield_getDiffusion33
@ -377,10 +374,12 @@ real(pReal) function porosity_phasefield_getMobility(ip,el)
porosity_phasefield_getMobility = 0.0_pReal porosity_phasefield_getMobility = 0.0_pReal
do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
porosity_phasefield_getMobility = porosity_phasefield_getMobility + lattice_PorosityMobility(material_phase(ipc,ip,el)) porosity_phasefield_getMobility = porosity_phasefield_getMobility &
+ lattice_PorosityMobility(material_phase(ipc,ip,el))
enddo enddo
porosity_phasefield_getMobility = porosity_phasefield_getMobility/homogenization_Ngrains(mesh_element(3,el)) porosity_phasefield_getMobility = &
porosity_phasefield_getMobility/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
end function porosity_phasefield_getMobility end function porosity_phasefield_getMobility

View File

@ -21,10 +21,10 @@ module prec
#if (FLOAT==8) #if (FLOAT==8)
integer, parameter, public :: pReal = 8 !< floating point double precision (was selected_real_kind(15,300), number with 15 significant digits, up to 1e+-300) integer, parameter, public :: pReal = 8 !< floating point double precision (was selected_real_kind(15,300), number with 15 significant digits, up to 1e+-300)
#ifdef __INTEL_COMPILER #ifdef __INTEL_COMPILER
real(pReal), parameter, public :: DAMASK_NaN = Z'7FF8000000000000' !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran) real(pReal), parameter, public :: DAMASK_NaN = Z'7FF8000000000000' !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html)
#endif #endif
#ifdef __GFORTRAN__ #ifdef __GFORTRAN__
real(pReal), parameter, public :: DAMASK_NaN = real(Z'7FF8000000000000',pReal) !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html, copy can be found in documentation/Code/Fortran) real(pReal), parameter, public :: DAMASK_NaN = real(Z'7FF8000000000000',pReal) !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html)
#endif #endif
#else #else
NO SUITABLE PRECISION FOR REAL SELECTED, STOPPING COMPILATION NO SUITABLE PRECISION FOR REAL SELECTED, STOPPING COMPILATION

View File

@ -102,8 +102,6 @@ module spectral_utilities
real(pReal) :: density real(pReal) :: density
end type tSolutionParams end type tSolutionParams
type(tSolutionParams), private :: params
type, public :: phaseFieldDataBin !< set of parameters defining a phase field type, public :: phaseFieldDataBin !< set of parameters defining a phase field
real(pReal) :: diffusion = 0.0_pReal, & !< thermal conductivity real(pReal) :: diffusion = 0.0_pReal, & !< thermal conductivity
mobility = 0.0_pReal, & !< thermal mobility mobility = 0.0_pReal, & !< thermal mobility
@ -265,8 +263,9 @@ subroutine utilities_init()
enddo enddo
elseif (divergence_correction == 2_pInt) then elseif (divergence_correction == 2_pInt) then
do j = 1_pInt, 3_pInt do j = 1_pInt, 3_pInt
if (j /= minloc(geomSize/grid,1) .and. j /= maxloc(geomSize/grid,1)) & if ( j /= int(minloc(geomSize/real(grid,pReal),1),pInt) &
scaledGeomSize = geomSize/geomSize(j)*grid(j) .and. j /= int(maxloc(geomSize/real(grid,pReal),1),pInt)) &
scaledGeomSize = geomSize/geomSize(j)*real(grid(j),pReal)
enddo enddo
else else
scaledGeomSize = geomSize scaledGeomSize = geomSize
@ -543,7 +542,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
integer(pInt) :: & integer(pInt) :: &
i, j, k, & i, j, k, &
l, m, n, o l, m, n, o
logical :: ierr logical :: err
if (worldrank == 0_pInt) then if (worldrank == 0_pInt) then
@ -563,7 +562,7 @@ subroutine utilities_fourierGammaConvolution(fieldAim)
matA(1:3,1:3) = real(temp33_complex); matA(4:6,4:6) = real(temp33_complex) matA(1:3,1:3) = real(temp33_complex); matA(4:6,4:6) = real(temp33_complex)
matA(1:3,4:6) = aimag(temp33_complex); matA(4:6,1:3) = -aimag(temp33_complex) matA(1:3,4:6) = aimag(temp33_complex); matA(4:6,1:3) = -aimag(temp33_complex)
if (abs(math_det33(matA(1:3,1:3))) > 1e-16) then if (abs(math_det33(matA(1:3,1:3))) > 1e-16) then
call math_invert(6_pInt, matA, matInvA, ierr) call math_invert(6_pInt, matA, matInvA, err)
temp33_complex = cmplx(matInvA(1:3,1:3),matInvA(1:3,4:6),pReal) temp33_complex = cmplx(matInvA(1:3,1:3),matInvA(1:3,4:6),pReal)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt) & forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt) &
gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k) gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k)
@ -623,6 +622,8 @@ end subroutine utilities_fourierGreenConvolution
!> @brief calculate root mean square of divergence of field_fourier !> @brief calculate root mean square of divergence of field_fourier
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
real(pReal) function utilities_divergenceRMS() real(pReal) function utilities_divergenceRMS()
use IO, only: &
IO_error
use numerics, only: & use numerics, only: &
worldrank worldrank
use mesh, only: & use mesh, only: &
@ -631,8 +632,8 @@ real(pReal) function utilities_divergenceRMS()
grid3 grid3
implicit none implicit none
integer(pInt) :: i, j, k integer(pInt) :: i, j, k, ierr
PetscErrorCode :: ierr complex(pReal), dimension(3) :: rescaledGeom
external :: & external :: &
MPI_Allreduce MPI_Allreduce
@ -641,6 +642,7 @@ real(pReal) function utilities_divergenceRMS()
write(6,'(/,a)') ' ... calculating divergence ................................................' write(6,'(/,a)') ' ... calculating divergence ................................................'
flush(6) flush(6)
endif endif
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculating RMS divergence criterion in Fourier space ! calculating RMS divergence criterion in Fourier space
@ -649,22 +651,23 @@ real(pReal) function utilities_divergenceRMS()
do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice. do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS & utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again + 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
conjg(-xi1st(1:3,i,j,k))*geomSize/scaledGeomSize))**2.0_pReal)& ! --> sum squared L_2 norm of vector conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),& +sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),&
conjg(-xi1st(1:3,i,j,k))*geomSize/scaledGeomSize))**2.0_pReal)) conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal))
enddo enddo
utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1) utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1)
+ sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), & + sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*geomSize/scaledGeomSize))**2.0_pReal) & conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), & + sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*geomSize/scaledGeomSize))**2.0_pReal) & conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), & + sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*geomSize/scaledGeomSize))**2.0_pReal) & conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), & + sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*geomSize/scaledGeomSize))**2.0_pReal) conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal)
enddo; enddo enddo; enddo
if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_divergenceRMS')
utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
@ -675,6 +678,8 @@ end function utilities_divergenceRMS
!> @brief calculate max of curl of field_fourier !> @brief calculate max of curl of field_fourier
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
real(pReal) function utilities_curlRMS() real(pReal) function utilities_curlRMS()
use IO, only: &
IO_error
use numerics, only: & use numerics, only: &
worldrank worldrank
use mesh, only: & use mesh, only: &
@ -683,9 +688,9 @@ real(pReal) function utilities_curlRMS()
grid3 grid3
implicit none implicit none
integer(pInt) :: i, j, k, l integer(pInt) :: i, j, k, l, ierr
complex(pReal), dimension(3,3) :: curl_fourier complex(pReal), dimension(3,3) :: curl_fourier
PetscErrorCode :: ierr complex(pReal), dimension(3) :: rescaledGeom
external :: & external :: &
MPI_Reduce, & MPI_Reduce, &
@ -695,6 +700,7 @@ real(pReal) function utilities_curlRMS()
write(6,'(/,a)') ' ... calculating curl ......................................................' write(6,'(/,a)') ' ... calculating curl ......................................................'
flush(6) flush(6)
endif endif
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
!-------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------
! calculating max curl criterion in Fourier space ! calculating max curl criterion in Fourier space
@ -703,39 +709,40 @@ real(pReal) function utilities_curlRMS()
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do k = 1_pInt, grid3; do j = 1_pInt, grid(2);
do i = 2_pInt, grid1Red - 1_pInt do i = 2_pInt, grid1Red - 1_pInt
do l = 1_pInt, 3_pInt do l = 1_pInt, 3_pInt
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*geomSize(2)/scaledGeomSize(2) & curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*geomSize(3)/scaledGeomSize(3)) -tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)*geomSize(3)/scaledGeomSize(3) & curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,i,j,k)*xi1st(1,i,j,k)*geomSize(1)/scaledGeomSize(1)) -tensorField_fourier(l,3,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1))
curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi1st(1,i,j,k)*geomSize(1)/scaledGeomSize(1) & curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k)*geomSize(2)/scaledGeomSize(2)) -tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2))
enddo enddo
utilities_curlRMS = utilities_curlRMS + & utilities_curlRMS = utilities_curlRMS + &
2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! Has somewhere a conj. complex counterpart. Therefore count it twice. 2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! Has somewhere a conj. complex counterpart. Therefore count it twice.
enddo enddo
do l = 1_pInt, 3_pInt do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*geomSize(2)/scaledGeomSize(2) & curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k)*geomSize(3)/scaledGeomSize(3)) -tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)*geomSize(3)/scaledGeomSize(3) & curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,1,j,k)*xi1st(1,1,j,k)*geomSize(1)/scaledGeomSize(1)) -tensorField_fourier(l,3,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi1st(1,1,j,k)*geomSize(1)/scaledGeomSize(1) & curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*geomSize(2)/scaledGeomSize(2)) -tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2))
enddo enddo
utilities_curlRMS = utilities_curlRMS + & utilities_curlRMS = utilities_curlRMS + &
sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1) sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
do l = 1_pInt, 3_pInt do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*geomSize(2)/scaledGeomSize(2) & curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*geomSize(3)/scaledGeomSize(3)) -tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*geomSize(3)/scaledGeomSize(3) & curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*geomSize(1)/scaledGeomSize(1)) -tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*geomSize(1)/scaledGeomSize(1) & curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*geomSize(2)/scaledGeomSize(2)) -tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2))
enddo enddo
utilities_curlRMS = utilities_curlRMS + & utilities_curlRMS = utilities_curlRMS + &
sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1) sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal)! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
enddo; enddo enddo; enddo
call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_curlRMS')
utilities_curlRMS = sqrt(utilities_curlRMS) * wgt utilities_curlRMS = sqrt(utilities_curlRMS) * wgt
if(grid(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 if(grid(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1

View File

@ -236,7 +236,7 @@ subroutine thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
use material, only: & use material, only: &
homogenization_Ngrains, & homogenization_Ngrains, &
mappingHomogenization, & mappingHomogenization, &
phaseAt, phasememberAt, & phaseAt, &
thermal_typeInstance, & thermal_typeInstance, &
phase_Nsources, & phase_Nsources, &
phase_source, & phase_source, &
@ -297,8 +297,8 @@ subroutine thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
enddo enddo
enddo enddo
Tdot = Tdot/homogenization_Ngrains(homog) Tdot = Tdot/real(homogenization_Ngrains(homog),pReal)
dTdot_dT = dTdot_dT/homogenization_Ngrains(homog) dTdot_dT = dTdot_dT/real(homogenization_Ngrains(homog),pReal)
end subroutine thermal_adiabatic_getSourceAndItsTangent end subroutine thermal_adiabatic_getSourceAndItsTangent
@ -336,8 +336,7 @@ function thermal_adiabatic_getSpecificHeat(ip,el)
enddo enddo
thermal_adiabatic_getSpecificHeat = & thermal_adiabatic_getSpecificHeat = &
thermal_adiabatic_getSpecificHeat/ & thermal_adiabatic_getSpecificHeat/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function thermal_adiabatic_getSpecificHeat end function thermal_adiabatic_getSpecificHeat
@ -375,8 +374,7 @@ function thermal_adiabatic_getMassDensity(ip,el)
enddo enddo
thermal_adiabatic_getMassDensity = & thermal_adiabatic_getMassDensity = &
thermal_adiabatic_getMassDensity/ & thermal_adiabatic_getMassDensity/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function thermal_adiabatic_getMassDensity end function thermal_adiabatic_getMassDensity

View File

@ -190,7 +190,7 @@ subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
use material, only: & use material, only: &
homogenization_Ngrains, & homogenization_Ngrains, &
mappingHomogenization, & mappingHomogenization, &
phaseAt, phasememberAt, & phaseAt, &
thermal_typeInstance, & thermal_typeInstance, &
phase_Nsources, & phase_Nsources, &
phase_source, & phase_source, &
@ -252,8 +252,8 @@ subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
enddo enddo
enddo enddo
Tdot = Tdot/homogenization_Ngrains(homog) Tdot = Tdot/real(homogenization_Ngrains(homog),pReal)
dTdot_dT = dTdot_dT/homogenization_Ngrains(homog) dTdot_dT = dTdot_dT/real(homogenization_Ngrains(homog),pReal)
end subroutine thermal_conduction_getSourceAndItsTangent end subroutine thermal_conduction_getSourceAndItsTangent
@ -291,8 +291,7 @@ function thermal_conduction_getConductivity33(ip,el)
enddo enddo
thermal_conduction_getConductivity33 = & thermal_conduction_getConductivity33 = &
thermal_conduction_getConductivity33/ & thermal_conduction_getConductivity33/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getConductivity33 end function thermal_conduction_getConductivity33
@ -330,8 +329,7 @@ function thermal_conduction_getSpecificHeat(ip,el)
enddo enddo
thermal_conduction_getSpecificHeat = & thermal_conduction_getSpecificHeat = &
thermal_conduction_getSpecificHeat/ & thermal_conduction_getSpecificHeat/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getSpecificHeat end function thermal_conduction_getSpecificHeat
@ -369,8 +367,7 @@ function thermal_conduction_getMassDensity(ip,el)
enddo enddo
thermal_conduction_getMassDensity = & thermal_conduction_getMassDensity = &
thermal_conduction_getMassDensity/ & thermal_conduction_getMassDensity/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getMassDensity end function thermal_conduction_getMassDensity

View File

@ -219,7 +219,7 @@ subroutine vacancyflux_cahnhilliard_getSourceAndItsTangent(CvDot, dCvDot_dCv, Cv
use material, only: & use material, only: &
homogenization_Ngrains, & homogenization_Ngrains, &
mappingHomogenization, & mappingHomogenization, &
phaseAt, phasememberAt, & phaseAt, &
phase_source, & phase_source, &
phase_Nsources, & phase_Nsources, &
SOURCE_vacancy_phenoplasticity_ID, & SOURCE_vacancy_phenoplasticity_ID, &
@ -266,8 +266,8 @@ subroutine vacancyflux_cahnhilliard_getSourceAndItsTangent(CvDot, dCvDot_dCv, Cv
enddo enddo
enddo enddo
CvDot = CvDot/homogenization_Ngrains(mappingHomogenization(2,ip,el)) CvDot = CvDot/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
dCvDot_dCv = dCvDot_dCv/homogenization_Ngrains(mappingHomogenization(2,ip,el)) dCvDot_dCv = dCvDot_dCv/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
end subroutine vacancyflux_cahnhilliard_getSourceAndItsTangent end subroutine vacancyflux_cahnhilliard_getSourceAndItsTangent
@ -301,8 +301,7 @@ function vacancyflux_cahnhilliard_getMobility33(ip,el)
enddo enddo
vacancyflux_cahnhilliard_getMobility33 = & vacancyflux_cahnhilliard_getMobility33 = &
vacancyflux_cahnhilliard_getMobility33/ & vacancyflux_cahnhilliard_getMobility33/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function vacancyflux_cahnhilliard_getMobility33 end function vacancyflux_cahnhilliard_getMobility33
@ -336,8 +335,7 @@ function vacancyflux_cahnhilliard_getDiffusion33(ip,el)
enddo enddo
vacancyflux_cahnhilliard_getDiffusion33 = & vacancyflux_cahnhilliard_getDiffusion33 = &
vacancyflux_cahnhilliard_getDiffusion33/ & vacancyflux_cahnhilliard_getDiffusion33/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function vacancyflux_cahnhilliard_getDiffusion33 end function vacancyflux_cahnhilliard_getDiffusion33
@ -371,8 +369,7 @@ real(pReal) function vacancyflux_cahnhilliard_getFormationEnergy(ip,el)
enddo enddo
vacancyflux_cahnhilliard_getFormationEnergy = & vacancyflux_cahnhilliard_getFormationEnergy = &
vacancyflux_cahnhilliard_getFormationEnergy/ & vacancyflux_cahnhilliard_getFormationEnergy/real(homogenization_Ngrains(mesh_element(3,el)),pReal)
homogenization_Ngrains(mesh_element(3,el))
end function vacancyflux_cahnhilliard_getFormationEnergy end function vacancyflux_cahnhilliard_getFormationEnergy
@ -408,7 +405,7 @@ real(pReal) function vacancyflux_cahnhilliard_getEntropicCoeff(ip,el)
vacancyflux_cahnhilliard_getEntropicCoeff = & vacancyflux_cahnhilliard_getEntropicCoeff = &
vacancyflux_cahnhilliard_getEntropicCoeff* & vacancyflux_cahnhilliard_getEntropicCoeff* &
temperature(material_homog(ip,el))%p(thermalMapping(material_homog(ip,el))%p(ip,el))/ & temperature(material_homog(ip,el))%p(thermalMapping(material_homog(ip,el))%p(ip,el))/ &
homogenization_Ngrains(material_homog(ip,el)) real(homogenization_Ngrains(material_homog(ip,el)),pReal)
end function vacancyflux_cahnhilliard_getEntropicCoeff end function vacancyflux_cahnhilliard_getEntropicCoeff
@ -467,8 +464,8 @@ subroutine vacancyflux_cahnhilliard_KinematicChemPotAndItsTangent(KPot, dKPot_dC
enddo enddo
enddo enddo
KPot = KPot/homogenization_Ngrains(material_homog(ip,el)) KPot = KPot/real(homogenization_Ngrains(material_homog(ip,el)),pReal)
dKPot_dCv = dKPot_dCv/homogenization_Ngrains(material_homog(ip,el)) dKPot_dCv = dKPot_dCv/real(homogenization_Ngrains(material_homog(ip,el)),pReal)
end subroutine vacancyflux_cahnhilliard_KinematicChemPotAndItsTangent end subroutine vacancyflux_cahnhilliard_KinematicChemPotAndItsTangent

View File

@ -235,7 +235,7 @@ subroutine vacancyflux_isochempot_getSourceAndItsTangent(CvDot, dCvDot_dCv, Cv,
use material, only: & use material, only: &
homogenization_Ngrains, & homogenization_Ngrains, &
mappingHomogenization, & mappingHomogenization, &
phaseAt, phasememberAt, & phaseAt, &
phase_source, & phase_source, &
phase_Nsources, & phase_Nsources, &
SOURCE_vacancy_phenoplasticity_ID, & SOURCE_vacancy_phenoplasticity_ID, &
@ -282,8 +282,8 @@ subroutine vacancyflux_isochempot_getSourceAndItsTangent(CvDot, dCvDot_dCv, Cv,
enddo enddo
enddo enddo
CvDot = CvDot/homogenization_Ngrains(mappingHomogenization(2,ip,el)) CvDot = CvDot/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
dCvDot_dCv = dCvDot_dCv/homogenization_Ngrains(mappingHomogenization(2,ip,el)) dCvDot_dCv = dCvDot_dCv/real(homogenization_Ngrains(mappingHomogenization(2,ip,el)),pReal)
end subroutine vacancyflux_isochempot_getSourceAndItsTangent end subroutine vacancyflux_isochempot_getSourceAndItsTangent