in Documentation\ConstitutiveLaw\DisloTwinLaw

Added tex source that generates PDF-file describing dislocation glide as implemented in constitutive_dislotwin.f90
This commit is contained in:
Luc Hantcherli 2009-10-08 07:33:01 +00:00
parent bb8a71557b
commit 8cb156dc35
1 changed files with 177 additions and 0 deletions

View File

@ -0,0 +1,177 @@
\documentclass{beamer}
\usepackage{amsmath,amssymb,amsfonts}
\usepackage{bm}
\usepackage{array}
%\include{Shortcuts}
\newcommand{\ie}{\textit{i.e.}}
\newcommand{\eg}{\textit{e.g.}}
\newcommand{\vect}[1]{\ensuremath{\mathbf{#1}}}
\newcommand{\tensII}[1]{\ensuremath{\mathbf{#1}}}
\newcommand{\tensIV}[1]{\ensuremath{\mathbb{#1}}}
\newcommand{\slip}[1]{\ensuremath{#1^{\alpha}}}
\newcommand{\slipslip}[1]{\ensuremath{#1^{\alpha\alpha}}}
\newcommand{\slipt}[1]{\ensuremath{#1^{\tilde\alpha}}}
\newcommand{\slipslipt}[1]{\ensuremath{#1^{\alpha\tilde\alpha}}}
\newcommand{\twin}[1]{\ensuremath{#1^{\beta}}}
\newcommand{\twint}[1]{\ensuremath{#1^{\tilde\beta}}}
\newcommand{\twintwint}[1]{\ensuremath{#1^{\beta\tilde\beta}}}
\newcommand{\sliptwin}[1]{\ensuremath{#1^{\alpha\beta}}}
\newcommand{\twinslip}[1]{\ensuremath{#1^{\beta\alpha}}}
\usetheme{mpie}
\setbeamertemplate{blocks}[rounded][shadow=true]
\title{Dislocation structure and kinetics in slip-twin model}
\date{MSU Twin Meeting, Duesseldorf -- October 6$^{\textsf{th}}$, 2009}
\begin{document}
\frame{\titlepage}
\frame {
\frametitle{Dislocation structure parametrization}
\begin{block}{Internal variables:}
\begin{itemize}
\item<1-> $\slip N$ edge dislocation densities $\slip\varrho_{\text{edge}}$
\item<1-> $\slip N$ dipole densities $\slip\varrho_{\text{dipole}}$
\end{itemize}
\end{block}
\begin{block}{Derived measures:}
\begin{itemize}
\item<1-> $\slip\tau_{\mathrm{c}}$ threshold shear stress
\item<1-> $\slip\lambda$ mean distance between 2 obstacles seen by a dislocation
\end{itemize}
\end{block}
}
\frame {
\frametitle{Dislocation structure parametrization}
\begin{block}{Threshold stress $\slip\tau$:}
\begin{equation}
\slip\tau_{\text{c}} = G_{\text{iso}}\,\slip b\,\sqrt{\sum_{\tilde\alpha\,=\,1}^{\slip N}\,\slipslipt\xi\,(\slipt\varrho_{\text{edge}} + \slipt\varrho_{\text{dipole}})} \nonumber
\end{equation}
\end{block}
\begin{block}{with:}
\begin{itemize}
\item<1-> $G_{\text{iso}}$ Isotropic shear modulus
\item<1-> $\slip b$ Burgers vector of slip system $\alpha$
\item<1-> $\slipslipt\xi$ interaction strength (Kubin et al. 2008)
\end{itemize}
\end{block}
}
\frame {
\frametitle{Orowan's kinetics}
\begin{block}{Shear rate $\slip{\dot\gamma}$:}
\begin{equation}
\slip{\dot\gamma} = \slip\varrho_{\text{edge}}\,\slip b\,\slip v_{\text{glide}} \nonumber
\end{equation}
\end{block}
\begin{block}{Velocity $\slip v_{\text{glide}}$:}
\begin{equation}
\slip v_{\text{glide}} = v_0\,
\exp{\left[-\dfrac{Q}{k_{\text{B}}\,T}\,\left(1-\left(\dfrac{|\slip\tau|}{\slip\tau_{\text{c}}}\right)^p\right)^q\right]} \operatorname{sign}(\slip\tau) \nonumber
\end{equation}
\end{block}
\begin{block}{with:}
\begin{itemize}
\item<1-> $v_0$ Velocity pre-factor
\item<1-> $Q$ Activation energy for dislocation glide
\item<1-> $k_{\text{B}}\,T$ Boltzmann energy
\end{itemize}
\end{block}
}
\frame {
\frametitle{Dislocation multiplication}
\begin{block}{Multiplication:}
\begin{equation}
\slip{\dot\varrho_{\text{multiplication}}} = \dfrac{|\slip{\dot\gamma}|}{\slip b\,\slip\lambda} \nonumber
\end{equation}
\end{block}
}
\frame {
\frametitle{Dislocation dipole formation}
\begin{block}{Dipole formation:}
\begin{equation}
\slip{\dot\varrho_{\text{formation}}} = 2\,\dfrac{2\,\slip{\hat d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber
\end{equation}
\end{block}
\begin{block}{Length $\slip{\hat d}$:}
\begin{equation}
\slip{\hat d} = \dfrac{1}{8\,\pi}\,\dfrac{G_{\text{iso}}\,\slip b}{1-\nu}\,\dfrac{1}{|\slip\tau|} \nonumber
\end{equation}
\end{block}
}
\frame {
\frametitle{Spontaneous annihilation of 2 single dislocations}
\begin{block}{Single-single annihilation:}
\begin{equation}
\slip{\dot\varrho_{\text{single-single}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{edge}}}{2}\,|\slip{\dot\gamma}| \nonumber
\end{equation}
\end{block}
\begin{block}{Length $\slip{\check d}$:}
\begin{equation}
\slip{\check d} \propto \slip b \nonumber
\end{equation}
\end{block}
}
\frame {
\frametitle{Spontaneous annihilation of one single dislocation and one dipole constituent}
\begin{block}{Single-dipole constituent annihilation:}
\begin{equation}
\slip{\dot\varrho_{\text{single-dipole}}} = 2\,\dfrac{2\,\slip{\check d}}{\slip b}\,\dfrac{\slip\varrho_{\text{dipole}}}{2}\,|\slip{\dot\gamma}| \nonumber
\end{equation}
\end{block}
}
\frame {
\frametitle{Dislocation dipole climb}
\begin{block}{Dipole climb:}
\begin{equation}
\slip{\dot\varrho_{\text{climb}}} = \slip\varrho_{\text{dipole}}\,\dfrac{4\,v_{\text{climb}}}{\slip{\hat d}+\slip{\check d}} \nonumber
\end{equation}
\end{block}
\begin{block}{Climb velocity $\slip v_{\text{climb}}$:}
\begin{equation}
\slip v_{\text{climb}} = \dfrac{D\,\slip\Omega}{\slip b\,k_{\text{B}}\,T}\,\dfrac{G_{\text{iso}}\,\slip b}{2\,\pi\,(1-\nu)}\,\dfrac{2}{\slip{\hat d}+\slip{\check d}} \nonumber
\end{equation}
\end{block}
}
\frame {
\frametitle{Evolution of dislocation densities}
\begin{block}{Edge dislocation density rate:}
\begin{equation}
\slip{\dot\varrho_{\text{edge}}} = \slip{\dot\varrho_{\text{multiplication}}} - \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single-single}}} \nonumber
\end{equation}
\end{block}
\begin{block}{Dislocation dipole density rate:}
\begin{equation}
\slip{\dot\varrho_{\text{dipole}}} = \slip{\dot\varrho_{\text{formation}}} - \slip{\dot\varrho_{\text{single-dipole}}} - \slip{\dot\varrho_{\text{climb}}} \nonumber
\end{equation}
\end{block}
}
\end{document}