reworked crystallite part to allow for flexible user output

--> new "crystallite" part in config file
--> new "crystallite" option for microstructures
--> new output file "...job.outputCrystallite" to be used in conjunction with marc_addUserOutput for meaningful naming of User Defined Vars.
This commit is contained in:
Philip Eisenlohr 2010-02-25 17:39:11 +00:00
parent 538faecf45
commit 8c8ed34356
10 changed files with 662 additions and 464 deletions

View File

@ -959,11 +959,15 @@ endfunction
msg = 'No homogenization specified via State Variable 2'
case (120)
msg = 'No microstructure specified via State Variable 3'
case (125)
msg = 'No entries in config part'
case (130)
msg = 'Homogenization index out of bounds'
case (140)
msg = 'Microstructure index out of bounds'
case (150)
msg = 'Crystallite index out of bounds'
case (155)
msg = 'Phase index out of bounds'
case (160)
msg = 'Texture index out of bounds'

View File

@ -98,7 +98,7 @@ subroutine constitutive_init()
write(fileunit,'(a)') '['//trim(phase_name(p))//']'
write(fileunit,*)
if (knownConstitution) then
write(fileunit,'(a)') '#'//char(9)//'constitution'//char(9)//trim(phase_constitution(p))
write(fileunit,'(a)') '(constitution)'//char(9)//trim(phase_constitution(p))
do e = 1,phase_Noutput(p)
write(fileunit,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo

View File

@ -19,7 +19,11 @@ implicit none
! ****************************************************************
! *** General variables for the crystallite calculation ***
! ****************************************************************
integer(pInt), parameter :: crystallite_Nresults = 14_pInt ! phaseID, volume, Euler angles, def gradient
integer(pInt) crystallite_maxSizePostResults
integer(pInt), dimension(:), allocatable :: crystallite_sizePostResults
integer(pInt), dimension(:,:), allocatable :: crystallite_sizePostResult
character(len=64), dimension(:,:), allocatable :: crystallite_output ! name of each post result output
real(pReal), dimension (:,:,:), allocatable :: &
crystallite_dt, & ! requested time increment of each grain
@ -74,103 +78,184 @@ CONTAINS
!********************************************************************
subroutine crystallite_init(Temperature)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debug_info, &
debug_reset
use math, only: math_I3, &
math_EulerToR
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains, &
material_EulerAngles, &
material_phase, &
phase_localConstitution
implicit none
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debug_info, &
debug_reset
use math, only: math_I3, &
math_EulerToR
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use IO
use material
!*** input variables ***!
real(pReal) Temperature
implicit none
integer(pInt), parameter :: file = 200
!*** output variables ***!
!*** input variables ***!
real(pReal) Temperature
!*** local variables ***!
integer(pInt) g, & ! grain number
i, & ! integration point number
e, & ! element number
gMax, & ! maximum number of grains
iMax, & ! maximum number of integration points
eMax, & ! maximum number of elements
nMax, & ! maximum number of ip neighbors
myNgrains
!*** output variables ***!
gMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
nMax = mesh_maxNipNeighbors
!*** local variables ***!
integer(pInt), parameter :: maxNchunks = 2
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) g, & ! grain number
i, & ! integration point number
e, & ! element number
gMax, & ! maximum number of grains
iMax, & ! maximum number of integration points
eMax, & ! maximum number of elements
nMax, & ! maximum number of ip neighbors
myNgrains, & ! number of grains in current IP
myCrystallite ! crystallite of current elem
integer(pInt) section, j,p, output, mySize
character(len=64) tag
character(len=1024) line
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
allocate(crystallite_R(3,3,gMax,iMax,eMax)); crystallite_R = 0.0_pReal
allocate(crystallite_eulerangles(3,gMax,iMax,eMax)); crystallite_eulerangles = 0.0_pReal
allocate(crystallite_misorientation(4,nMax,gMax,iMax,eMax)); crystallite_misorientation = 0.0_pReal
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
allocate(crystallite_localConstitution(gMax,iMax,eMax)); crystallite_localConstitution = .true.
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
allocate(crystallite_stateConverged(gMax,iMax,eMax)); crystallite_stateConverged = .false.
allocate(crystallite_temperatureConverged(gMax,iMax,eMax)); crystallite_temperatureConverged = .false.
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .true.
gMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
nMax = mesh_maxNipNeighbors
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element
do g = 1,myNgrains
crystallite_partionedTemperature0(g,i,e) = Temperature ! isothermal assumption
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
crystallite_Fe(:,:,g,i,e) = transpose(crystallite_Fp0(:,:,g,i,e))
crystallite_F0(:,:,g,i,e) = math_I3
crystallite_partionedFp0(:,:,g,i,e) = crystallite_Fp0(:,:,g,i,e)
crystallite_partionedF0(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_partionedF(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_requested(g,i,e) = .true.
crystallite_localConstitution(g,i,e) = phase_localConstitution(material_phase(g,i,e))
enddo
enddo
enddo
!$OMPEND PARALLEL DO
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
allocate(crystallite_R(3,3,gMax,iMax,eMax)); crystallite_R = 0.0_pReal
allocate(crystallite_eulerangles(3,gMax,iMax,eMax)); crystallite_eulerangles = 0.0_pReal
allocate(crystallite_misorientation(4,nMax,gMax,iMax,eMax)); crystallite_misorientation = 0.0_pReal
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
allocate(crystallite_localConstitution(gMax,iMax,eMax)); crystallite_localConstitution = .true.
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
allocate(crystallite_stateConverged(gMax,iMax,eMax)); crystallite_stateConverged = .false.
allocate(crystallite_temperatureConverged(gMax,iMax,eMax)); crystallite_temperatureConverged = .false.
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .true.
allocate(crystallite_output(maxval(crystallite_Noutput), &
material_Ncrystallite)) ; crystallite_output = ''
allocate(crystallite_sizePostResults(material_Ncrystallite)) ; crystallite_sizePostResults = 0_pInt
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
material_Ncrystallite)) ; crystallite_sizePostResult = 0_pInt
if(.not. IO_open_file(file,material_configFile)) call IO_error (100) ! corrupt config file
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to <crystallite>
read(file,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
output = 0 ! reset output counter
endif
if (section > 0) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('(output)')
output = output + 1
crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2))
end select
endif
enddo
100 close(file)
do i = 1,material_Ncrystallite ! sanity checks
enddo
do i = 1,material_Ncrystallite
do j = 1,crystallite_Noutput(i)
select case(crystallite_output(j,i))
case('phase')
mySize = 1
case('volume')
mySize = 1
case('orientation')
mySize = 3
case('defgrad')
mySize = 9
case default
mySize = 0
end select
if (mySize > 0_pInt) then ! any meaningful output found
crystallite_sizePostResult(j,i) = mySize
crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize
endif
enddo
enddo
crystallite_maxSizePostResults = maxval(crystallite_sizePostResults)
! write description file for crystallite output
if(.not. IO_open_jobFile(file,'outputCrystallite')) call IO_error (50) ! problems in writing file
do p = 1,material_Ncrystallite
write(file,*)
write(file,'(a)') '['//trim(crystallite_name(p))//']'
write(file,*)
do e = 1,crystallite_Noutput(p)
write(file,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p)
enddo
enddo
close(file)
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element
do g = 1,myNgrains
crystallite_partionedTemperature0(g,i,e) = Temperature ! isothermal assumption
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
crystallite_Fe(:,:,g,i,e) = transpose(crystallite_Fp0(:,:,g,i,e))
crystallite_F0(:,:,g,i,e) = math_I3
crystallite_partionedFp0(:,:,g,i,e) = crystallite_Fp0(:,:,g,i,e)
crystallite_partionedF0(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_partionedF(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_requested(g,i,e) = .true.
crystallite_localConstitution(g,i,e) = phase_localConstitution(material_phase(g,i,e))
enddo
enddo
enddo
!$OMPEND PARALLEL DO
call crystallite_orientations()
call crystallite_stressAndItsTangent(.true.) ! request elastic answers
@ -182,8 +267,6 @@ subroutine crystallite_init(Temperature)
write(6,*) '<<<+- crystallite init -+>>>'
write(6,*) '$Id$'
write(6,*)
write(6,'(a35,x,7(i5,x))') 'crystallite_Nresults: ', crystallite_Nresults
write(6,*)
write(6,'(a35,x,7(i5,x))') 'crystallite_Temperature: ', shape(crystallite_Temperature)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fe: ', shape(crystallite_Fe)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp: ', shape(crystallite_Fp)
@ -221,6 +304,8 @@ subroutine crystallite_init(Temperature)
write(6,'(a35,x,7(i5,x))') 'crystallite_converged: ', shape(crystallite_converged)
write(6,'(a35,x,7(i5,x))') 'crystallite_stateConverged: ', shape(crystallite_stateConverged)
write(6,'(a35,x,7(i5,x))') 'crystallite_temperatureConverged: ', shape(crystallite_temperatureConverged)
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
write(6,*)
write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localConstitution)
call flush(6)
@ -1505,7 +1590,10 @@ function crystallite_postResults(&
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use material, only: material_phase, &
use mesh, only: mesh_element
use material, only: microstructure_crystallite, &
crystallite_Noutput, &
material_phase, &
material_volume
use constitutive, only: constitutive_sizePostResults, &
constitutive_postResults
@ -1519,28 +1607,36 @@ function crystallite_postResults(&
real(pReal), intent(in):: dt ! time increment
!*** output variables ***!
real(pReal), dimension(1+crystallite_Nresults + 1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,e)))+ &
1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
!*** local variables ***!
real(pReal), dimension(3,3) :: U, R
integer(pInt) k,l,c
logical error
integer(pInt) k,l,o,c,crystID
logical error
crystID = microstructure_crystallite(mesh_element(4,e))
crystallite_postResults = 0.0_pReal
c = 0_pInt
crystallite_postResults(c+1) = crystallite_Nresults; c = c+1_pInt ! size of (hardwired) results
if (crystallite_Nresults >= 2) then
crystallite_postResults(c+1) = material_phase(g,i,e)
crystallite_postResults(c+2) = material_volume(g,i,e)
c = c+2_pInt
endif
if (crystallite_Nresults >= 5) then
crystallite_postResults(c+1:c+3) = crystallite_eulerangles(:,g,i,e) ! grain orientation
c = c+3_pInt
endif
if (crystallite_Nresults >= 14) then ! deformation gradient 11,12,13,21,...
forall (k=0:2,l=0:2) crystallite_postResults(c+1+k*3+l) = crystallite_partionedF(k+1,l+1,g,i,e)
c = c+9_pInt
endif
crystallite_postResults(c+1) = crystallite_sizePostResults(crystID); c = c+1_pInt ! size of results from cryst
do o = 1,crystallite_Noutput(crystID)
select case(crystallite_output(o,crystID))
case ('phase')
crystallite_postResults(c+1) = material_phase(g,i,e) ! phaseID of grain
c = c + 1_pInt
case ('volume')
crystallite_postResults(c+1) = material_volume(g,i,e) ! grain volume (not fraction but absolute, right?)
c = c + 1_pInt
case ('orientation')
crystallite_postResults(c+1:c+3) = crystallite_eulerangles(:,g,i,e) ! grain orientation
c = c + 3_pInt
case ('defgrad')
forall (k=0:2,l=0:2) crystallite_postResults(c+1+k*3+l) = crystallite_partionedF(k+1,l+1,g,i,e)
c = c+9_pInt
end select
enddo
crystallite_postResults(c+1) = constitutive_sizePostResults(g,i,e); c = c+1_pInt ! size of constitutive results
crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = &

View File

@ -59,7 +59,7 @@ subroutine homogenization_init(Temperature)
use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips
use material
use constitutive, only: constitutive_maxSizePostResults
use crystallite, only: crystallite_Nresults
use crystallite, only: crystallite_maxSizePostResults
use homogenization_isostrain
use homogenization_RGC ! RGC homogenization added <<<updated 31.07.2009>>>
@ -99,7 +99,8 @@ subroutine homogenization_init(Temperature)
write(fileunit,'(a)') '['//trim(homogenization_name(p))//']'
write(fileunit,*)
if (knownHomogenization) then
write(fileunit,'(a)') '#'//char(9)//'homogenization'//char(9)//trim(homogenization_type(p))
write(fileunit,'(a)') '(type)'//char(9)//trim(homogenization_type(p))
write(fileunit,'(a,i)') '(ngrains)'//char(9),homogenization_Ngrains(p)
do e = 1,homogenization_Noutput(p)
write(fileunit,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
@ -168,8 +169,9 @@ subroutine homogenization_init(Temperature)
homogenization_maxSizePostResults = maxval(homogenization_sizePostResults)
materialpoint_sizeResults = 1+ 1+homogenization_maxSizePostResults + & ! grain count, homogSize, homogResult
homogenization_maxNgrains*(1+crystallite_Nresults+1+constitutive_maxSizePostResults)
allocate(materialpoint_results( materialpoint_sizeResults, mesh_maxNips,mesh_NcpElems))
homogenization_maxNgrains*(1+crystallite_maxSizePostResults+ & ! results count, cryst results
1+constitutive_maxSizePostResults) ! results count, constitutive results
allocate(materialpoint_results(materialpoint_sizeResults, mesh_maxNips,mesh_NcpElems))
! *** Output to MARC output file ***
@ -505,17 +507,18 @@ subroutine materialpoint_postResults(dt)
use FEsolving, only: FEsolving_execElem, FEsolving_execIP
use mesh, only: mesh_element
use material, only: homogenization_Ngrains
use material, only: homogenization_Ngrains, microstructure_crystallite
use constitutive, only: constitutive_sizePostResults, constitutive_postResults
use crystallite, only: crystallite_Nresults, crystallite_postResults
use crystallite, only: crystallite_sizePostResults, crystallite_postResults
implicit none
real(pReal), intent(in) :: dt
integer(pInt) g,i,e,c,d,myNgrains
integer(pInt) g,i,e,c,d,myNgrains,myCrystallite
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
myCrystallite = microstructure_crystallite(mesh_element(4,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
c = 0_pInt
materialpoint_results(c+1,i,e) = myNgrains; c = c+1_pInt ! tell number of grains at materialpoint
@ -526,7 +529,7 @@ subroutine materialpoint_postResults(dt)
homogenization_postResults(i,e); c = c+d
endif
do g = 1,myNgrains ! loop over all grains
d = 1+crystallite_Nresults + 1+constitutive_sizePostResults(g,i,e)
d = 1+crystallite_sizePostResults(myCrystallite) + 1+constitutive_sizePostResults(g,i,e)
materialpoint_results(c+1:c+d,i,e) = & ! tell crystallite results
crystallite_postResults(dt,g,i,e); c = c+d
enddo

View File

@ -1,8 +1,17 @@
#####################
# $Id$
#####################
#-------------------#
<global>
#-------------------#
[crystallite]
results 14
#-------------------#
<homogenization>
#####################
#-------------------#
[SX]
type isostrain
@ -23,28 +32,42 @@ overproportionality 1.0e+1 1.0e+1 1.0e+1 # typical range between 0.1 (very lar
type isostrain
Ngrains 2
#####################
#-------------------#
<microstructure>
#####################
#-------------------#
[Aluminum_Poly]
/elementhomogeneous/ # put this flag to set ips identical in one element (something like reduced integration)
crystallite 1
(constituent) phase 3 texture 1 fraction 1.0
[Aluminum_001]
crystallite 1
(constituent) phase 3 texture 2 fraction 1.0
[Aluminum_j2]
crystallite 1
(constituent) phase 1 texture 1 fraction 1.0
[DP_Steel]
/elementhomogeneous/
(constituent) phase 1 texture 1 fraction 0.82
crystallite 1
(constituent) phase 1 texture 1 fraction 0.82
(constituent) phase 2 texture 1 fraction 0.18
#####################
#-------------------#
<crystallite>
#-------------------#
[all]
(output) phase
(output) volume
(output) orientation
(output) defgrad
#-------------------#
<phase>
#####################
#-------------------#
[Aluminum_J2isotropic]
@ -320,9 +343,9 @@ Cthresholdtwin 1.0 # Adj. parameter controlling slip threshold stress
interactionSlipTwin 0.0 1.0 # Dislocation interaction coefficients
interactionTwinTwin 0.0 1.0 # Dislocation interaction coefficients
#####################
#-------------------#
<texture>
#####################
#-------------------#
[Rolling]
hybridIA DP_EBSD.linearODF

View File

@ -15,6 +15,7 @@ implicit none
character(len=64), parameter :: material_configFile = 'material.config'
character(len=32), parameter :: material_partHomogenization = 'homogenization'
character(len=32), parameter :: material_partMicrostructure = 'microstructure'
character(len=32), parameter :: material_partCrystallite = 'crystallite'
character(len=32), parameter :: material_partPhase = 'phase'
character(len=32), parameter :: material_partTexture = 'texture'
@ -25,6 +26,7 @@ character(len=32), parameter :: material_partTexture = 'texture'
!* Number of materials
integer(pInt) material_Nhomogenization, & ! number of homogenizations
material_Nmicrostructure, & ! number of microstructures
material_Ncrystallite, & ! number of crystallite settings
material_Nphase, & ! number of phases
material_Ntexture, & ! number of textures
microstructure_maxNconstituents, & ! max number of constituents in any phase
@ -34,6 +36,7 @@ integer(pInt) material_Nhomogenization, &
character(len=64), dimension(:), allocatable :: homogenization_name, & ! name of each homogenization
homogenization_type, & ! type of each homogenization
microstructure_name, & ! name of each microstructure
crystallite_name, & ! name of each crystallite setting
phase_name, & ! name of each phase
phase_constitution, & ! constitution of each phase
texture_name ! name of each texture
@ -42,6 +45,7 @@ integer(pInt), dimension(:), allocatable :: homogenization_Ngrains, &
homogenization_typeInstance, & ! instance of particular type of each homogenization
homogenization_Noutput, & ! number of '(output)' items per homogenization
microstructure_Nconstituents, & ! number of constituents in each microstructure
crystallite_Noutput, & ! number of '(output)' items per crystallite setting
phase_constitutionInstance, & ! instance of particular constitution of each phase
phase_Noutput, & ! number of '(output)' items per phase
texture_symmetry, & ! number of symmetric orientations per texture
@ -51,6 +55,7 @@ logical, dimension(:), allocatable :: homogenization_active, &
microstructure_active, & !
microstructure_elemhomo, & ! flag to indicate homogeneous microstructure distribution over element's IPs
phase_localConstitution ! flags phases with local constitutive law
integer(pInt), dimension(:), allocatable :: microstructure_crystallite ! crystallite setting ID of each microstructure
integer(pInt), dimension(:,:), allocatable :: microstructure_phase, & ! phase IDs of each microstructure
microstructure_texture ! texture IDs of each microstructure
real(pReal), dimension(:,:), allocatable :: microstructure_fraction ! vol fraction of each constituent in microstructure
@ -84,13 +89,20 @@ subroutine material_init()
if(.not. IO_open_file(fileunit,material_configFile)) call IO_error(100) ! cannot open config file
call material_parseHomogenization(fileunit,material_partHomogenization)
call material_parseMicrostructure(fileunit,material_partMicrostructure)
call material_parseCrystallite(fileunit,material_partCrystallite)
call material_parseTexture(fileunit,material_partTexture)
call material_parsePhase(fileunit,material_partPhase)
close(fileunit)
write(6,*) '<<<+- done -+>>>'; call flush(6)
write(6,*) 'material_Nmicrostructure',material_Nmicrostructure
write(6,*) 'microstructure_crystallite',microstructure_crystallite
write(6,*) 'material_Ncrystallite',material_Ncrystallite
do i = 1,material_Nmicrostructure
if (microstructure_crystallite(i) < 1 .or. &
microstructure_crystallite(i) > material_Ncrystallite) call IO_error(150,i)
if (minval(microstructure_phase(1:microstructure_Nconstituents(i),i)) < 1 .or. &
maxval(microstructure_phase(1:microstructure_Nconstituents(i),i)) > material_Nphase) call IO_error(150,i)
maxval(microstructure_phase(1:microstructure_Nconstituents(i),i)) > material_Nphase) call IO_error(155,i)
if (minval(microstructure_texture(1:microstructure_Nconstituents(i),i)) < 1 .or. &
maxval(microstructure_texture(1:microstructure_Nconstituents(i),i)) > material_Ntexture) call IO_error(160,i)
if (abs(sum(microstructure_fraction(:,i)) - 1.0_pReal) >= 1.0e-10_pReal) then
@ -106,9 +118,12 @@ subroutine material_init()
write (6,'(x,a32,x,a16,x,i4)') homogenization_name(i),homogenization_type(i),homogenization_Ngrains(i)
enddo
write (6,*)
write (6,'(a32,x,a12,x,a13)') 'microstructure ','constituents','homogeneous'
write (6,'(a32,x,a11,x,a12,x,a13)') 'microstructure ','crystallite','constituents','homogeneous'
do i = 1,material_Nmicrostructure
write (6,'(a32,4x,i4,8x,l)') microstructure_name(i),microstructure_Nconstituents(i),microstructure_elemhomo(i)
write (6,'(a32,4x,i4,8x,i4,8x,l)') microstructure_name(i), &
microstructure_crystallite(i), &
microstructure_Nconstituents(i), &
microstructure_elemhomo(i)
if (microstructure_Nconstituents(i) > 0_pInt) then
do j = 1,microstructure_Nconstituents(i)
write (6,'(a1,x,a32,x,a32,x,f6.4)') '>',phase_name(microstructure_phase(j,i)),&
@ -143,6 +158,7 @@ subroutine material_parseHomogenization(file,myPart)
Nsections = IO_countSections(file,myPart)
material_Nhomogenization = Nsections
if (Nsections < 1_pInt) call IO_error(125,ext_msg=myPart)
allocate(homogenization_name(Nsections)); homogenization_name = ''
allocate(homogenization_type(Nsections)); homogenization_type = ''
@ -211,7 +227,10 @@ subroutine material_parseMicrostructure(file,myPart)
Nsections = IO_countSections(file,myPart)
material_Nmicrostructure = Nsections
allocate(microstructure_name(Nsections)); microstructure_name = ''
if (Nsections < 1_pInt) call IO_error(125,ext_msg=myPart)
allocate(microstructure_name(Nsections)); microstructure_name = ''
allocate(microstructure_crystallite(Nsections)); microstructure_crystallite = 0_pInt
allocate(microstructure_Nconstituents(Nsections))
allocate(microstructure_active(Nsections))
allocate(microstructure_elemhomo(Nsections))
@ -247,6 +266,8 @@ subroutine material_parseMicrostructure(file,myPart)
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('crystallite')
microstructure_crystallite(section) = IO_intValue(line,positions,2)
case ('(constituent)')
constituent = constituent + 1
do i=2,6,2
@ -269,6 +290,53 @@ subroutine material_parseMicrostructure(file,myPart)
endsubroutine
!*********************************************************************
subroutine material_parseCrystallite(file,myPart)
!*********************************************************************
use prec, only: pInt
use IO
use mesh, only: mesh_element
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: file
integer(pInt) Nsections, section
character(len=64) tag
character(len=1024) line
Nsections = IO_countSections(file,myPart)
material_Ncrystallite = Nsections
if (Nsections < 1_pInt) call IO_error(125,ext_msg=myPart)
allocate(crystallite_name(Nsections)); crystallite_name = ''
allocate(crystallite_Noutput(Nsections)); crystallite_Noutput = 0_pInt
crystallite_Noutput = IO_countTagInPart(file,myPart,'(output)',Nsections)
rewind(file)
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(file,'(a1024)',END=100) line
enddo
do
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
crystallite_name(section) = IO_getTag(line,'[',']')
endif
enddo
100 return
endsubroutine
!*********************************************************************
subroutine material_parsePhase(file,myPart)
!*********************************************************************
@ -287,6 +355,8 @@ subroutine material_parsePhase(file,myPart)
Nsections = IO_countSections(file,myPart)
material_Nphase = Nsections
if (Nsections < 1_pInt) call IO_error(125,ext_msg=myPart)
allocate(phase_name(Nsections)); phase_name = ''
allocate(phase_constitution(Nsections)); phase_constitution = ''
allocate(phase_constitutionInstance(Nsections)); phase_constitutionInstance = 0_pInt
@ -351,6 +421,8 @@ subroutine material_parseTexture(file,myPart)
Nsections = IO_countSections(file,myPart)
material_Ntexture = Nsections
if (Nsections < 1_pInt) call IO_error(125,ext_msg=myPart)
allocate(texture_name(Nsections)); texture_name = ''
allocate(texture_ODFfile(Nsections)); texture_ODFfile = ''
allocate(texture_symmetry(Nsections)); texture_symmetry = 1_pInt

View File

@ -1,4 +1,4 @@
!* $Id: mpie_cpfem_abaqus.f 431 2009-10-13 06:55:15Z MPIE\f.roters $
!* $Id$
!********************************************************************
! Material subroutine for Abaqus
!
@ -25,7 +25,7 @@ subroutine mpie_cpfem_init ()
!$OMP CRITICAL (write2out)
write(6,*)
write(6,*) '<<<+- mpie_cpfem_abaqus_exp init -+>>>'
write(6,*) '$Id: mpie_cpfem_abaqus.f 431 2009-10-13 06:55:15Z MPIE\f.roters $'
write(6,*) '$Id$'
write(6,*)
call flush(6)
!$OMP END CRITICAL (write2out)

View File

@ -43,7 +43,7 @@ real(pReal) relevantStrain, & ! strain
volDiscrPow_RGC ! powerlaw penalty for volume discrepancy
!* Random seeding parameters: added <<<updated 27.08.2009>>>
integer(pInt) fixedSeed ! fixed seeding for pseudo-random number generator
integer(pInt) fixedSeed ! fixed seeding for pseudo-random number generator
CONTAINS