no need for an extra file
This commit is contained in:
parent
a39e6b7af9
commit
8ba547a1b5
|
@ -1,164 +0,0 @@
|
|||
####################################################################################################
|
||||
# Code below available according to the following conditions on
|
||||
# https://github.com/MarDiehl/3Drotations
|
||||
####################################################################################################
|
||||
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification, are
|
||||
# permitted provided that the following conditions are met:
|
||||
#
|
||||
# - Redistributions of source code must retain the above copyright notice, this list
|
||||
# of conditions and the following disclaimer.
|
||||
# - Redistributions in binary form must reproduce the above copyright notice, this
|
||||
# list of conditions and the following disclaimer in the documentation and/or
|
||||
# other materials provided with the distribution.
|
||||
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
||||
# of its contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
||||
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
####################################################################################################
|
||||
|
||||
import numpy as np
|
||||
|
||||
_sc = np.pi**(1./6.)/6.**(1./6.)
|
||||
_beta = np.pi**(5./6.)/6.**(1./6.)/2.
|
||||
_R1 = (3.*np.pi/4.)**(1./3.)
|
||||
|
||||
def cube_to_ball(cube):
|
||||
"""
|
||||
Map a point in a uniform refinable cubical grid to a point on a uniform refinable grid on a ball.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cube : numpy.ndarray
|
||||
coordinates of a point in a uniform refinable cubical grid.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
cube_ = np.clip(cube,None,np.pi**(2./3.) * 0.5) if np.isclose(np.abs(np.max(cube)),np.pi**(2./3.) * 0.5,atol=1e-6) else cube
|
||||
|
||||
# transform to the sphere grid via the curved square, and intercept the zero point
|
||||
if np.allclose(cube_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.zeros(3)
|
||||
else:
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
p = _get_order(cube_)
|
||||
XYZ = cube_[p[0]] * _sc
|
||||
|
||||
# intercept all the points along the z-axis
|
||||
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
else:
|
||||
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
||||
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
||||
c = np.cos(q)
|
||||
s = np.sin(q)
|
||||
q = _R1*2.0**0.25/_beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
|
||||
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
||||
|
||||
# transform to sphere grid (inverse Lambert)
|
||||
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
|
||||
c = np.sum(T**2)
|
||||
s = c * np.pi/24.0 /XYZ[2]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
||||
q = np.sqrt( 1.0 - s )
|
||||
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
ball = ball[p[1]]
|
||||
|
||||
return ball
|
||||
|
||||
|
||||
def ball_to_cube(ball):
|
||||
"""
|
||||
Map a point on a uniform refinable grid on a ball to a point in a uniform refinable cubical grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ball : numpy.ndarray
|
||||
coordinates of a point on a uniform refinable grid on a ball.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
ball_ = ball/np.linalg.norm(ball)*_R1 if np.isclose(np.linalg.norm(ball),_R1,atol=1e-6) else ball
|
||||
rs = np.linalg.norm(ball_)
|
||||
|
||||
if np.allclose(ball_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
cube = np.zeros(3)
|
||||
else:
|
||||
p = _get_order(ball_)
|
||||
xyz3 = ball_[p[0]]
|
||||
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
||||
|
||||
# inverse M_2
|
||||
qxy = np.sum(xyz2**2)
|
||||
|
||||
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-16):
|
||||
Tinv = np.zeros(2)
|
||||
else:
|
||||
q2 = qxy + np.max(np.abs(xyz2))**2
|
||||
sq2 = np.sqrt(q2)
|
||||
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
|
||||
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
||||
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
|
||||
np.array([np.arccos(tt)/np.pi*12.0,1.0])
|
||||
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
||||
|
||||
# inverse M_1
|
||||
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
cube = cube[p[1]]
|
||||
|
||||
return cube
|
||||
|
||||
|
||||
def _get_order(xyz):
|
||||
"""
|
||||
Get order of the coordinates.
|
||||
|
||||
Depending on the pyramid in which the point is located, the order need to be adjusted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xyz : numpy.ndarray
|
||||
coordinates of a point on a uniform refinable grid on a ball or
|
||||
in a uniform refinable cubical grid.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
if (abs(xyz[0])<= xyz[2]) and (abs(xyz[1])<= xyz[2]) or \
|
||||
(abs(xyz[0])<=-xyz[2]) and (abs(xyz[1])<=-xyz[2]):
|
||||
return [[0,1,2],[0,1,2]]
|
||||
elif (abs(xyz[2])<= xyz[0]) and (abs(xyz[1])<= xyz[0]) or \
|
||||
(abs(xyz[2])<=-xyz[0]) and (abs(xyz[1])<=-xyz[0]):
|
||||
return [[1,2,0],[2,0,1]]
|
||||
elif (abs(xyz[0])<= xyz[1]) and (abs(xyz[2])<= xyz[1]) or \
|
||||
(abs(xyz[0])<=-xyz[1]) and (abs(xyz[2])<=-xyz[1]):
|
||||
return [[2,0,1],[1,2,0]]
|
|
@ -1,10 +1,14 @@
|
|||
import numpy as np
|
||||
|
||||
from ._Lambert import ball_to_cube, cube_to_ball
|
||||
from . import mechanics
|
||||
|
||||
_P = -1
|
||||
|
||||
# parameters for conversion from/to cubochoric
|
||||
_sc = np.pi**(1./6.)/6.**(1./6.)
|
||||
_beta = np.pi**(5./6.)/6.**(1./6.)/2.
|
||||
_R1 = (3.*np.pi/4.)**(1./3.)
|
||||
|
||||
def iszero(a):
|
||||
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
|
||||
|
||||
|
@ -1043,9 +1047,49 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def ho2cu(ho):
|
||||
"""Homochoric vector to cubochoric vector."""
|
||||
"""
|
||||
Homochoric vector to cubochoric vector.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
if len(ho.shape) == 1:
|
||||
return ball_to_cube(ho)
|
||||
ball_ = ho/np.linalg.norm(ho)*_R1 if np.isclose(np.linalg.norm(ho),_R1,atol=1e-6) \
|
||||
else ho
|
||||
rs = np.linalg.norm(ball_)
|
||||
|
||||
if np.allclose(ball_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
cube = np.zeros(3)
|
||||
else:
|
||||
p = _get_order(ball_)
|
||||
xyz3 = ball_[p[0]]
|
||||
|
||||
# inverse M_3
|
||||
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
||||
|
||||
# inverse M_2
|
||||
qxy = np.sum(xyz2**2)
|
||||
|
||||
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-16):
|
||||
Tinv = np.zeros(2)
|
||||
else:
|
||||
q2 = qxy + np.max(np.abs(xyz2))**2
|
||||
sq2 = np.sqrt(q2)
|
||||
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
|
||||
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
||||
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
|
||||
np.array([np.arccos(tt)/np.pi*12.0,1.0])
|
||||
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
||||
|
||||
# inverse M_1
|
||||
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /_sc
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
cube = cube[p[1]]
|
||||
|
||||
return cube
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@ -1078,8 +1122,79 @@ class Rotation:
|
|||
|
||||
@staticmethod
|
||||
def cu2ho(cu):
|
||||
"""Cubochoric vector to homochoric vector."""
|
||||
"""
|
||||
Cubochoric vector to homochoric vector.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
if len(cu.shape) == 1:
|
||||
return cube_to_ball(cu)
|
||||
|
||||
cube_ = np.clip(cu,None,np.pi**(2./3.) * 0.5) if np.isclose(np.abs(np.max(cu)),np.pi**(2./3.) * 0.5,atol=1e-6) \
|
||||
else cu
|
||||
|
||||
# transform to the sphere grid via the curved square, and intercept the zero point
|
||||
if np.allclose(cube_,0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.zeros(3)
|
||||
else:
|
||||
# get pyramide and scale by grid parameter ratio
|
||||
p = _get_order(cube_)
|
||||
XYZ = cube_[p[0]] * _sc
|
||||
|
||||
# intercept all the points along the z-axis
|
||||
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-16):
|
||||
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
||||
else:
|
||||
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
||||
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
||||
c = np.cos(q)
|
||||
s = np.sin(q)
|
||||
q = _R1*2.0**0.25/_beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
|
||||
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
||||
|
||||
# transform to sphere grid (inverse Lambert)
|
||||
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
|
||||
c = np.sum(T**2)
|
||||
s = c * np.pi/24.0 /XYZ[2]**2
|
||||
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
||||
q = np.sqrt( 1.0 - s )
|
||||
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
||||
|
||||
# reverse the coordinates back to the regular order according to the original pyramid number
|
||||
ball = ball[p[1]]
|
||||
|
||||
return ball
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def _get_order(xyz):
|
||||
"""
|
||||
Get order of the coordinates.
|
||||
|
||||
Depending on the pyramid in which the point is located, the order need to be adjusted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xyz : numpy.ndarray
|
||||
coordinates of a point on a uniform refinable grid on a ball or
|
||||
in a uniform refinable cubical grid.
|
||||
|
||||
References
|
||||
----------
|
||||
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
||||
https://doi.org/10.1088/0965-0393/22/7/075013
|
||||
|
||||
"""
|
||||
if (abs(xyz[0])<= xyz[2]) and (abs(xyz[1])<= xyz[2]) or \
|
||||
(abs(xyz[0])<=-xyz[2]) and (abs(xyz[1])<=-xyz[2]):
|
||||
return [[0,1,2],[0,1,2]]
|
||||
elif (abs(xyz[2])<= xyz[0]) and (abs(xyz[1])<= xyz[0]) or \
|
||||
(abs(xyz[2])<=-xyz[0]) and (abs(xyz[1])<=-xyz[0]):
|
||||
return [[1,2,0],[2,0,1]]
|
||||
elif (abs(xyz[0])<= xyz[1]) and (abs(xyz[2])<= xyz[1]) or \
|
||||
(abs(xyz[0])<=-xyz[1]) and (abs(xyz[2])<=-xyz[1]):
|
||||
return [[2,0,1],[1,2,0]]
|
||||
|
|
Loading…
Reference in New Issue