calculation of shear modulus for cubic crystals can be simplifieid, tests added for different crystal symmetries
This commit is contained in:
parent
1264d8dfc1
commit
8b5fa37428
|
@ -9,7 +9,7 @@ phase:
|
||||||
lattice: cF
|
lattice: cF
|
||||||
mechanical:
|
mechanical:
|
||||||
output: [F, P, F_e, F_p, L_p, O]
|
output: [F, P, F_e, F_p, L_p, O]
|
||||||
elastic: {type: Hooke, C_11: 106.75e+9, C_12: 60.41e+9, C_44: 28.34e+9, modulus_type: 'Voigt'}
|
elastic: {type: Hooke, C_11: 106.75e+9, C_12: 60.41e+9, C_44: 28.34e+9}
|
||||||
plastic:
|
plastic:
|
||||||
type: phenopowerlaw
|
type: phenopowerlaw
|
||||||
N_sl: [12]
|
N_sl: [12]
|
||||||
|
|
|
@ -9,6 +9,7 @@
|
||||||
submodule(homogenization:mechanical) RGC
|
submodule(homogenization:mechanical) RGC
|
||||||
use rotations
|
use rotations
|
||||||
use lattice
|
use lattice
|
||||||
|
use phase
|
||||||
|
|
||||||
type :: tParameters
|
type :: tParameters
|
||||||
integer, dimension(:), allocatable :: &
|
integer, dimension(:), allocatable :: &
|
||||||
|
@ -652,9 +653,9 @@ module function RGC_updateState(P,F,avgF,dt,dPdF,ce) result(doneAndHappy)
|
||||||
|
|
||||||
real(pReal), dimension(6,6) :: C
|
real(pReal), dimension(6,6) :: C
|
||||||
|
|
||||||
|
|
||||||
C = phase_homogenizedC66(material_phaseID(co,ce),material_phaseEntry(co,ce)) ! damage not included!
|
C = phase_homogenizedC66(material_phaseID(co,ce),material_phaseEntry(co,ce)) ! damage not included!
|
||||||
equivalentMu = lattice_equivalent_mu(C,'voigt')
|
|
||||||
|
equivalentMu = lattice_isotropic_mu(C,'voigt',phase_lattice_structure(co,ce))
|
||||||
|
|
||||||
end function equivalentMu
|
end function equivalentMu
|
||||||
|
|
||||||
|
|
|
@ -376,8 +376,8 @@ module lattice
|
||||||
|
|
||||||
public :: &
|
public :: &
|
||||||
lattice_init, &
|
lattice_init, &
|
||||||
lattice_equivalent_nu, &
|
lattice_isotropic_nu, &
|
||||||
lattice_equivalent_mu, &
|
lattice_isotropic_mu, &
|
||||||
lattice_symmetrize_33, &
|
lattice_symmetrize_33, &
|
||||||
lattice_symmetrize_C66, &
|
lattice_symmetrize_C66, &
|
||||||
lattice_SchmidMatrix_slip, &
|
lattice_SchmidMatrix_slip, &
|
||||||
|
@ -2149,10 +2149,11 @@ end function getlabels
|
||||||
!> @brief Equivalent Poisson's ratio (ν)
|
!> @brief Equivalent Poisson's ratio (ν)
|
||||||
!> @details https://doi.org/10.1143/JPSJ.20.635
|
!> @details https://doi.org/10.1143/JPSJ.20.635
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure function lattice_equivalent_nu(C,assumption) result(nu)
|
pure function lattice_isotropic_nu(C,assumption,lattice) result(nu)
|
||||||
|
|
||||||
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
||||||
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
||||||
|
character(len=2), intent(in) :: lattice
|
||||||
real(pReal) :: nu
|
real(pReal) :: nu
|
||||||
|
|
||||||
real(pReal) :: K, mu
|
real(pReal) :: K, mu
|
||||||
|
@ -2172,20 +2173,22 @@ pure function lattice_equivalent_nu(C,assumption) result(nu)
|
||||||
error stop 'invalid assumption'
|
error stop 'invalid assumption'
|
||||||
end if
|
end if
|
||||||
|
|
||||||
mu = lattice_equivalent_mu(C,assumption)
|
mu = lattice_isotropic_mu(C,assumption,lattice)
|
||||||
nu = (1.5_pReal*K-mu)/(3.0_pReal*K+mu)
|
nu = (1.5_pReal*K-mu)/(3.0_pReal*K+mu)
|
||||||
|
|
||||||
end function lattice_equivalent_nu
|
end function lattice_isotropic_nu
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief Equivalent shear modulus (μ)
|
!> @brief Equivalent shear modulus (μ)
|
||||||
!> @details https://doi.org/10.1143/JPSJ.20.635
|
!> @details https://doi.org/10.1143/JPSJ.20.635
|
||||||
|
!> @details Nonlinear Mechanics of Crystals 10.1007/978-94-007-0350-6, pp 563
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure function lattice_equivalent_mu(C,assumption) result(mu)
|
pure function lattice_isotropic_mu(C,assumption,lattice) result(mu)
|
||||||
|
|
||||||
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
||||||
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
||||||
|
character(len=2), intent(in) :: lattice
|
||||||
real(pReal) :: mu
|
real(pReal) :: mu
|
||||||
|
|
||||||
logical :: error
|
logical :: error
|
||||||
|
@ -2193,18 +2196,32 @@ pure function lattice_equivalent_mu(C,assumption) result(mu)
|
||||||
|
|
||||||
|
|
||||||
if (IO_lc(assumption) == 'voigt') then
|
if (IO_lc(assumption) == 'voigt') then
|
||||||
mu = (1.0_pReal*(C(1,1)+C(2,2)+C(3,3)) -1.0_pReal*(C(1,2)+C(2,3)+C(1,3)) +3.0_pReal*(C(4,4)+C(5,5)+C(6,6))) &
|
select case(lattice)
|
||||||
/ 15.0_pReal
|
case('cF','cI')
|
||||||
|
mu = ( C(1,1) - C(1,2) + C(4,4)*3.0_pReal) / 5.0_pReal
|
||||||
|
case default
|
||||||
|
mu = ( C(1,1)+C(2,2)+C(3,3) &
|
||||||
|
-(C(1,2)+C(2,3)+C(1,3)) &
|
||||||
|
+(C(4,4)+C(5,5)+C(6,6)) * 3.0_pReal &
|
||||||
|
) / 15.0_pReal
|
||||||
|
end select
|
||||||
|
|
||||||
elseif (IO_lc(assumption) == 'reuss') then
|
elseif (IO_lc(assumption) == 'reuss') then
|
||||||
call math_invert(S,error,C)
|
select case(lattice)
|
||||||
if (error) error stop 'matrix inversion failed'
|
case('cF','cI')
|
||||||
mu = 15.0_pReal &
|
mu = 1.0_pReal &
|
||||||
/ (4.0_pReal*(S(1,1)+S(2,2)+S(3,3)) -4.0_pReal*(S(1,2)+S(2,3)+S(1,3)) +3.0_pReal*(S(4,4)+S(5,5)+S(6,6)))
|
/ ((4.0_pReal/(5.0_pReal * (C(1,1)-C(1,2)))) + (3.0_pReal/(5.0_pReal*C(4,4))))
|
||||||
|
case default
|
||||||
|
call math_invert(S,error,C)
|
||||||
|
if (error) error stop 'matrix inversion failed'
|
||||||
|
mu = 15.0_pReal &
|
||||||
|
/ (4.0_pReal*(S(1,1)+S(2,2)+S(3,3)) -4.0_pReal*(S(1,2)+S(2,3)+S(1,3)) +3.0_pReal*(S(4,4)+S(5,5)+S(6,6)))
|
||||||
|
end select
|
||||||
else
|
else
|
||||||
error stop 'invalid assumption'
|
error stop 'invalid assumption'
|
||||||
end if
|
end if
|
||||||
|
|
||||||
end function lattice_equivalent_mu
|
end function lattice_isotropic_mu
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
@ -2270,16 +2287,42 @@ subroutine selfTest
|
||||||
|
|
||||||
call random_number(C)
|
call random_number(C)
|
||||||
C(1,1) = C(1,1) + C(1,2) + 0.1_pReal
|
C(1,1) = C(1,1) + C(1,2) + 0.1_pReal
|
||||||
|
C(1,3) = C(1,2)
|
||||||
|
C(3,3) = C(1,1)
|
||||||
C(4,4) = 0.5_pReal * (C(1,1) - C(1,2))
|
C(4,4) = 0.5_pReal * (C(1,1) - C(1,2))
|
||||||
C = lattice_symmetrize_C66(C,'cI')
|
C(6,6) = C(4,4)
|
||||||
if (dNeq(C(4,4),lattice_equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/voigt'
|
|
||||||
if (dNeq(C(4,4),lattice_equivalent_mu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_mu/reuss'
|
C_cI = lattice_symmetrize_C66(C,'cI')
|
||||||
|
if (dNeq(C_cI(4,4),lattice_isotropic_mu(C_cI,'voigt','cI'),1.0e-12_pReal)) error stop 'isotropic_mu/cI/voigt'
|
||||||
|
if (dNeq(C_cI(4,4),lattice_isotropic_mu(C_cI,'reuss','cI'),1.0e-12_pReal)) error stop 'isotropic_mu/cI/reuss'
|
||||||
|
|
||||||
|
lambda = C_cI(1,2)
|
||||||
|
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_cI,'voigt','cI')), &
|
||||||
|
lattice_isotropic_nu(C_cI,'voigt','cI'),1.0e-12_pReal)) error stop 'isotropic_nu/cI/voigt'
|
||||||
|
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_cI,'reuss','cI')), &
|
||||||
|
lattice_isotropic_nu(C_cI,'reuss','cI'),1.0e-12_pReal)) error stop 'isotropic_nu/cI/reuss'
|
||||||
|
|
||||||
|
|
||||||
|
C_hP = lattice_symmetrize_C66(C,'hP')
|
||||||
|
if (dNeq(C(4,4),lattice_isotropic_mu(C_hP,'voigt','hP'),1.0e-12_pReal)) error stop 'isotropic_mu/hP/voigt'
|
||||||
|
if (dNeq(C(4,4),lattice_isotropic_mu(C_hP,'reuss','hP'),1.0e-12_pReal)) error stop 'isotropic_mu/hP/reuss'
|
||||||
|
|
||||||
|
lambda = C_hP(1,2)
|
||||||
|
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_hP,'voigt','hP')), &
|
||||||
|
lattice_isotropic_nu(C_hP,'voigt','hP'),1.0e-12_pReal)) error stop 'isotropic_nu/hP/voigt'
|
||||||
|
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_hP,'reuss','hP')), &
|
||||||
|
lattice_isotropic_nu(C_hP,'reuss','hP'),1.0e-12_pReal)) error stop 'isotropic_nu/hP/reuss'
|
||||||
|
|
||||||
|
C_tI = lattice_symmetrize_C66(C,'tI')
|
||||||
|
if (dNeq(C(6,6),lattice_isotropic_mu(C_tI,'voigt','tI'),1.0e-12_pReal)) error stop 'isotropic_mu/tI/voigt'
|
||||||
|
if (dNeq(C(6,6),lattice_isotropic_mu(C_tI,'reuss','tI'),1.0e-12_pReal)) error stop 'isotropic_mu/tI/reuss'
|
||||||
|
|
||||||
|
lambda = C_tI(1,2)
|
||||||
|
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_tI,'voigt','tI')), &
|
||||||
|
lattice_isotropic_nu(C_tI,'voigt','tI'),1.0e-12_pReal)) error stop 'isotropic_nu/tI/voigt'
|
||||||
|
if (dNeq(lambda*0.5_pReal/(lambda+lattice_isotropic_mu(C_tI,'reuss','tI')), &
|
||||||
|
lattice_isotropic_nu(C_tI,'reuss','tI'),1.0e-12_pReal)) error stop 'isotropic_nu/tI/reuss'
|
||||||
|
|
||||||
lambda = C(1,2)
|
|
||||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'voigt')), &
|
|
||||||
lattice_equivalent_nu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_nu/voigt'
|
|
||||||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'reuss')), &
|
|
||||||
lattice_equivalent_nu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_nu/reuss'
|
|
||||||
|
|
||||||
end subroutine selfTest
|
end subroutine selfTest
|
||||||
|
|
||||||
|
|
|
@ -347,6 +347,7 @@ module phase
|
||||||
phase_K_T, &
|
phase_K_T, &
|
||||||
phase_mu_phi, &
|
phase_mu_phi, &
|
||||||
phase_mu_T, &
|
phase_mu_T, &
|
||||||
|
phase_lattice_structure, &
|
||||||
phase_results, &
|
phase_results, &
|
||||||
phase_allocateState, &
|
phase_allocateState, &
|
||||||
phase_forward, &
|
phase_forward, &
|
||||||
|
@ -434,6 +435,20 @@ subroutine phase_init
|
||||||
end subroutine phase_init
|
end subroutine phase_init
|
||||||
|
|
||||||
|
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
!> @brief Get lattice structure for a given phase
|
||||||
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
function phase_lattice_structure(co,ce) result(lattice)
|
||||||
|
|
||||||
|
integer, intent(in) :: co, ce
|
||||||
|
|
||||||
|
character(len=2) :: lattice
|
||||||
|
|
||||||
|
lattice = phase_lattice(material_phaseID(co,ce))
|
||||||
|
|
||||||
|
end function phase_lattice_structure
|
||||||
|
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief Allocate the components of the state structure for a given phase
|
!> @brief Allocate the components of the state structure for a given phase
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
|
|
|
@ -169,14 +169,16 @@ submodule(phase) mechanical
|
||||||
integer, intent(in) :: ph, en
|
integer, intent(in) :: ph, en
|
||||||
end function elastic_C66
|
end function elastic_C66
|
||||||
|
|
||||||
pure module function elastic_mu(ph,en) result(mu)
|
pure module function elastic_mu(ph,en,isotropic_bound) result(mu)
|
||||||
real(pReal) :: mu
|
real(pReal) :: mu
|
||||||
integer, intent(in) :: ph, en
|
integer, intent(in) :: ph, en
|
||||||
|
character(len=5), intent(in) :: isotropic_bound
|
||||||
end function elastic_mu
|
end function elastic_mu
|
||||||
|
|
||||||
pure module function elastic_nu(ph,en) result(nu)
|
pure module function elastic_nu(ph,en,isotropic_bound) result(nu)
|
||||||
real(pReal) :: nu
|
real(pReal) :: nu
|
||||||
integer, intent(in) :: ph, en
|
integer, intent(in) :: ph, en
|
||||||
|
character(len=5), intent(in) :: isotropic_bound
|
||||||
end function elastic_nu
|
end function elastic_nu
|
||||||
|
|
||||||
end interface
|
end interface
|
||||||
|
|
|
@ -8,7 +8,6 @@ submodule(phase:mechanical) elastic
|
||||||
C_33, &
|
C_33, &
|
||||||
C_44, &
|
C_44, &
|
||||||
C_66
|
C_66
|
||||||
character(len=pStringLen) :: modulus_type
|
|
||||||
end type tParameters
|
end type tParameters
|
||||||
|
|
||||||
type(tParameters), allocatable, dimension(:) :: param
|
type(tParameters), allocatable, dimension(:) :: param
|
||||||
|
@ -58,8 +57,6 @@ module subroutine elastic_init(phases)
|
||||||
if (phase_lattice(ph) == 'tI') &
|
if (phase_lattice(ph) == 'tI') &
|
||||||
prm%C_66 = polynomial(elastic%asDict(),'C_66','T')
|
prm%C_66 = polynomial(elastic%asDict(),'C_66','T')
|
||||||
|
|
||||||
prm%modulus_type=elastic%get_asString('modulus_type',defaultVal='Voigt')
|
|
||||||
|
|
||||||
end associate
|
end associate
|
||||||
end do
|
end do
|
||||||
|
|
||||||
|
@ -105,17 +102,18 @@ end function elastic_C66
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief return shear modulus
|
!> @brief return shear modulus
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure module function elastic_mu(ph,en) result(mu)
|
pure module function elastic_mu(ph,en,isotropic_bound) result(mu)
|
||||||
|
|
||||||
integer, intent(in) :: &
|
integer, intent(in) :: &
|
||||||
ph, &
|
ph, &
|
||||||
en
|
en
|
||||||
|
character(len=5), intent(in) :: isotropic_bound
|
||||||
real(pReal) :: &
|
real(pReal) :: &
|
||||||
mu
|
mu
|
||||||
|
|
||||||
associate(prm => param(ph))
|
associate(prm => param(ph))
|
||||||
|
|
||||||
mu = lattice_equivalent_mu(elastic_C66(ph,en),prm%modulus_type)
|
mu = lattice_isotropic_mu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph))
|
||||||
|
|
||||||
end associate
|
end associate
|
||||||
|
|
||||||
|
@ -125,17 +123,18 @@ end function elastic_mu
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
!> @brief return Poisson ratio
|
!> @brief return Poisson ratio
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
pure module function elastic_nu(ph,en) result(nu)
|
pure module function elastic_nu(ph,en,isotropic_bound) result(nu)
|
||||||
|
|
||||||
integer, intent(in) :: &
|
integer, intent(in) :: &
|
||||||
ph, &
|
ph, &
|
||||||
en
|
en
|
||||||
|
character(len=5), intent(in) :: isotropic_bound
|
||||||
real(pReal) :: &
|
real(pReal) :: &
|
||||||
nu
|
nu
|
||||||
|
|
||||||
associate(prm => param(ph))
|
associate(prm => param(ph))
|
||||||
|
|
||||||
nu = lattice_equivalent_nu(elastic_C66(ph,en),prm%modulus_type)
|
nu = lattice_isotropic_nu(elastic_C66(ph,en),isotropic_bound,phase_lattice(ph))
|
||||||
|
|
||||||
end associate
|
end associate
|
||||||
|
|
||||||
|
|
|
@ -35,6 +35,8 @@ submodule(phase:plastic) dislotungsten
|
||||||
P_nS_neg
|
P_nS_neg
|
||||||
integer :: &
|
integer :: &
|
||||||
sum_N_sl !< total number of active slip system
|
sum_N_sl !< total number of active slip system
|
||||||
|
character(len=5) :: &
|
||||||
|
isotropic_bound
|
||||||
character(len=pStringLen), allocatable, dimension(:) :: &
|
character(len=pStringLen), allocatable, dimension(:) :: &
|
||||||
output
|
output
|
||||||
logical :: &
|
logical :: &
|
||||||
|
@ -130,6 +132,8 @@ module function plastic_dislotungsten_init() result(myPlasticity)
|
||||||
#else
|
#else
|
||||||
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
prm%isotropic_bound = pl%get_asString('isotropic_bound',defaultVal='Voigt')
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! slip related parameters
|
! slip related parameters
|
||||||
|
@ -333,7 +337,7 @@ module function dislotungsten_dotState(Mp,ph,en) result(dotState)
|
||||||
dot_rho_dip => dotState(indexDotState(ph)%rho_dip(1):indexDotState(ph)%rho_dip(2)), &
|
dot_rho_dip => dotState(indexDotState(ph)%rho_dip(1):indexDotState(ph)%rho_dip(2)), &
|
||||||
dot_gamma_sl => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)))
|
dot_gamma_sl => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
T = thermal_T(ph,en)
|
T = thermal_T(ph,en)
|
||||||
|
|
||||||
call kinetics(Mp,T,ph,en,&
|
call kinetics(Mp,T,ph,en,&
|
||||||
|
@ -384,7 +388,7 @@ module subroutine dislotungsten_dependentState(ph,en)
|
||||||
|
|
||||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||||
|
|
||||||
dst%tau_pass(:,en) = elastic_mu(ph,en)*prm%b_sl &
|
dst%tau_pass(:,en) = elastic_mu(ph,en,prm%isotropic_bound)*prm%b_sl &
|
||||||
* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
|
* sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,en)+stt%rho_dip(:,en)))
|
||||||
|
|
||||||
Lambda_sl_inv = 1.0_pReal/prm%D &
|
Lambda_sl_inv = 1.0_pReal/prm%D &
|
||||||
|
|
|
@ -74,6 +74,8 @@ submodule(phase:plastic) dislotwin
|
||||||
fcc_twinNucleationSlipPair ! ToDo: Better name? Is also use for trans
|
fcc_twinNucleationSlipPair ! ToDo: Better name? Is also use for trans
|
||||||
character(len=:), allocatable :: &
|
character(len=:), allocatable :: &
|
||||||
lattice_tr
|
lattice_tr
|
||||||
|
character(len=5) :: &
|
||||||
|
isotropic_bound
|
||||||
character(len=pStringLen), allocatable, dimension(:) :: &
|
character(len=pStringLen), allocatable, dimension(:) :: &
|
||||||
output
|
output
|
||||||
logical :: &
|
logical :: &
|
||||||
|
@ -186,6 +188,8 @@ module function plastic_dislotwin_init() result(myPlasticity)
|
||||||
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
prm%isotropic_bound = pl%get_asString('isotropic_bound',defaultVal='Voigt')
|
||||||
|
|
||||||
!--------------------------------------------------------------------------------------------------
|
!--------------------------------------------------------------------------------------------------
|
||||||
! slip related parameters
|
! slip related parameters
|
||||||
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
||||||
|
@ -644,8 +648,8 @@ module function dislotwin_dotState(Mp,ph,en) result(dotState)
|
||||||
dot_f_tw => dotState(indexDotState(ph)%f_tw(1):indexDotState(ph)%f_tw(2)), &
|
dot_f_tw => dotState(indexDotState(ph)%f_tw(1):indexDotState(ph)%f_tw(2)), &
|
||||||
dot_f_tr => dotState(indexDotState(ph)%f_tr(1):indexDotState(ph)%f_tr(2)))
|
dot_f_tr => dotState(indexDotState(ph)%f_tr(1):indexDotState(ph)%f_tr(2)))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
nu = elastic_nu(ph,en)
|
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||||
T = thermal_T(ph,en)
|
T = thermal_T(ph,en)
|
||||||
|
|
||||||
f_matrix = 1.0_pReal &
|
f_matrix = 1.0_pReal &
|
||||||
|
@ -732,7 +736,7 @@ module subroutine dislotwin_dependentState(ph,en)
|
||||||
|
|
||||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
sumf_tw = sum(stt%f_tw(1:prm%sum_N_tw,en))
|
sumf_tw = sum(stt%f_tw(1:prm%sum_N_tw,en))
|
||||||
sumf_tr = sum(stt%f_tr(1:prm%sum_N_tr,en))
|
sumf_tr = sum(stt%f_tr(1:prm%sum_N_tr,en))
|
||||||
|
|
||||||
|
@ -930,8 +934,8 @@ pure subroutine kinetics_tw(Mp,T,abs_dot_gamma_sl,ph,en,&
|
||||||
|
|
||||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
nu = elastic_nu(ph,en)
|
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||||
Gamma_sf = prm%Gamma_sf%at(T)
|
Gamma_sf = prm%Gamma_sf%at(T)
|
||||||
|
|
||||||
tau_hat = 3.0_pReal*prm%b_tw(1)*mu/prm%L_tw &
|
tau_hat = 3.0_pReal*prm%b_tw(1)*mu/prm%L_tw &
|
||||||
|
@ -1006,8 +1010,8 @@ pure subroutine kinetics_tr(Mp,T,abs_dot_gamma_sl,ph,en,&
|
||||||
|
|
||||||
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
associate(prm => param(ph), stt => state(ph), dst => dependentState(ph))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
nu = elastic_nu(ph,en)
|
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||||
Gamma_sf = prm%Gamma_sf%at(T)
|
Gamma_sf = prm%Gamma_sf%at(T)
|
||||||
|
|
||||||
tau_hat = 3.0_pReal*prm%b_tr(1)*mu/prm%L_tr &
|
tau_hat = 3.0_pReal*prm%b_tr(1)*mu/prm%L_tr &
|
||||||
|
|
|
@ -115,6 +115,8 @@ submodule(phase:plastic) nonlocal
|
||||||
sum_N_sl = 0
|
sum_N_sl = 0
|
||||||
integer, dimension(:), allocatable :: &
|
integer, dimension(:), allocatable :: &
|
||||||
colinearSystem !< colinear system to the active slip system (only valid for fcc!)
|
colinearSystem !< colinear system to the active slip system (only valid for fcc!)
|
||||||
|
character(len=5) :: &
|
||||||
|
isotropic_bound
|
||||||
character(len=pStringLen), dimension(:), allocatable :: &
|
character(len=pStringLen), dimension(:), allocatable :: &
|
||||||
output
|
output
|
||||||
logical :: &
|
logical :: &
|
||||||
|
@ -241,6 +243,7 @@ module function plastic_nonlocal_init() result(myPlasticity)
|
||||||
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
prm%output = pl%get_as1dString('output',defaultVal=emptyStringArray)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
prm%isotropic_bound = pl%get_asString('isotropic_bound',defaultVal='Voigt')
|
||||||
prm%atol_rho = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
|
prm%atol_rho = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal)
|
||||||
|
|
||||||
ini%N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
ini%N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray)
|
||||||
|
@ -609,8 +612,8 @@ module subroutine nonlocal_dependentState(ph, en)
|
||||||
|
|
||||||
associate(prm => param(ph),dst => dependentState(ph), stt => state(ph))
|
associate(prm => param(ph),dst => dependentState(ph), stt => state(ph))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
nu = elastic_nu(ph,en)
|
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||||
rho = getRho(ph,en)
|
rho = getRho(ph,en)
|
||||||
|
|
||||||
stt%rho_forest(:,en) = matmul(prm%forestProjection_Edge, sum(abs(rho(:,edg)),2)) &
|
stt%rho_forest(:,en) = matmul(prm%forestProjection_Edge, sum(abs(rho(:,edg)),2)) &
|
||||||
|
@ -880,8 +883,8 @@ module subroutine plastic_nonlocal_deltaState(Mp,ph,en)
|
||||||
|
|
||||||
associate(prm => param(ph),dst => dependentState(ph),del => deltaState(ph))
|
associate(prm => param(ph),dst => dependentState(ph),del => deltaState(ph))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
nu = elastic_nu(ph,en)
|
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||||
|
|
||||||
!*** shortcut to state variables
|
!*** shortcut to state variables
|
||||||
forall (s = 1:prm%sum_N_sl, t = 1:4) v(s,t) = plasticState(ph)%state(iV(s,t,ph),en)
|
forall (s = 1:prm%sum_N_sl, t = 1:4) v(s,t) = plasticState(ph)%state(iV(s,t,ph),en)
|
||||||
|
@ -994,8 +997,8 @@ module subroutine nonlocal_dotState(Mp,timestep, &
|
||||||
|
|
||||||
associate(prm => param(ph), dst => dependentState(ph), dot => dotState(ph), stt => state(ph))
|
associate(prm => param(ph), dst => dependentState(ph), dot => dotState(ph), stt => state(ph))
|
||||||
|
|
||||||
mu = elastic_mu(ph,en)
|
mu = elastic_mu(ph,en,prm%isotropic_bound)
|
||||||
nu = elastic_nu(ph,en)
|
nu = elastic_nu(ph,en,prm%isotropic_bound)
|
||||||
Temperature = thermal_T(ph,en)
|
Temperature = thermal_T(ph,en)
|
||||||
|
|
||||||
tau = 0.0_pReal
|
tau = 0.0_pReal
|
||||||
|
|
Loading…
Reference in New Issue