python 3 compatibility
This commit is contained in:
parent
a84e7310f5
commit
8a94f55a2e
|
@ -84,7 +84,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def _quote(self,
|
||||
what):
|
||||
"""quote empty or white space-containing output"""
|
||||
"""Quote empty or white space-containing output"""
|
||||
import re
|
||||
|
||||
return '{quote}{content}{quote}'.format(
|
||||
|
@ -107,7 +107,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def output_write(self,
|
||||
what):
|
||||
"""aggregate a single row (string) or list of (possibly containing further lists of) rows into output"""
|
||||
"""Aggregate a single row (string) or list of (possibly containing further lists of) rows into output"""
|
||||
if not isinstance(what, (str, unicode)):
|
||||
try:
|
||||
for item in what: self.output_write(item)
|
||||
|
@ -147,7 +147,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def head_read(self):
|
||||
"""
|
||||
get column labels
|
||||
Get column labels
|
||||
|
||||
by either reading the first row or,
|
||||
if keyword "head[*]" is present, the last line of the header
|
||||
|
@ -200,7 +200,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def head_write(self,
|
||||
header = True):
|
||||
"""write current header information (info + labels)"""
|
||||
"""Write current header information (info + labels)"""
|
||||
head = ['{}\theader'.format(len(self.info)+self.__IO__['labeled'])] if header else []
|
||||
head.append(self.info)
|
||||
if self.__IO__['labeled']: head.append('\t'.join(map(self._quote,self.tags)))
|
||||
|
@ -209,7 +209,7 @@ class ASCIItable():
|
|||
|
||||
# ------------------------------------------------------------------
|
||||
def head_getGeom(self):
|
||||
"""interpret geom header"""
|
||||
"""Interpret geom header"""
|
||||
identifiers = {
|
||||
'grid': ['a','b','c'],
|
||||
'size': ['x','y','z'],
|
||||
|
@ -249,7 +249,7 @@ class ASCIItable():
|
|||
|
||||
# ------------------------------------------------------------------
|
||||
def head_putGeom(self,info):
|
||||
"""translate geometry description to header"""
|
||||
"""Translate geometry description to header"""
|
||||
self.info_append([
|
||||
"grid\ta {}\tb {}\tc {}".format(*info['grid']),
|
||||
"size\tx {}\ty {}\tz {}".format(*info['size']),
|
||||
|
@ -262,7 +262,7 @@ class ASCIItable():
|
|||
def labels_append(self,
|
||||
what,
|
||||
reset = False):
|
||||
"""add item or list to existing set of labels (and switch on labeling)"""
|
||||
"""Add item or list to existing set of labels (and switch on labeling)"""
|
||||
if not isinstance(what, (str, unicode)):
|
||||
try:
|
||||
for item in what: self.labels_append(item)
|
||||
|
@ -276,7 +276,7 @@ class ASCIItable():
|
|||
|
||||
# ------------------------------------------------------------------
|
||||
def labels_clear(self):
|
||||
"""delete existing labels and switch to no labeling"""
|
||||
"""Delete existing labels and switch to no labeling"""
|
||||
self.tags = []
|
||||
self.__IO__['labeled'] = False
|
||||
|
||||
|
@ -285,7 +285,7 @@ class ASCIItable():
|
|||
tags = None,
|
||||
raw = False):
|
||||
"""
|
||||
tell abstract labels.
|
||||
Tell abstract labels.
|
||||
|
||||
"x" for "1_x","2_x",... unless raw output is requested.
|
||||
operates on object tags or given list.
|
||||
|
@ -322,7 +322,7 @@ class ASCIItable():
|
|||
def label_index(self,
|
||||
labels):
|
||||
"""
|
||||
tell index of column label(s).
|
||||
Tell index of column label(s).
|
||||
|
||||
return numpy array if asked for list of labels.
|
||||
transparently deals with label positions implicitly given as numbers or their headings given as strings.
|
||||
|
@ -363,7 +363,7 @@ class ASCIItable():
|
|||
def label_dimension(self,
|
||||
labels):
|
||||
"""
|
||||
tell dimension (length) of column label(s).
|
||||
Tell dimension (length) of column label(s).
|
||||
|
||||
return numpy array if asked for list of labels.
|
||||
transparently deals with label positions implicitly given as numbers or their headings given as strings.
|
||||
|
@ -417,7 +417,7 @@ class ASCIItable():
|
|||
def label_indexrange(self,
|
||||
labels):
|
||||
"""
|
||||
tell index range for given label(s).
|
||||
Tell index range for given label(s).
|
||||
|
||||
return numpy array if asked for list of labels.
|
||||
transparently deals with label positions implicitly given as numbers or their headings given as strings.
|
||||
|
@ -434,7 +434,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def info_append(self,
|
||||
what):
|
||||
"""add item or list to existing set of infos"""
|
||||
"""Add item or list to existing set of infos"""
|
||||
if not isinstance(what, (str, unicode)):
|
||||
try:
|
||||
for item in what: self.info_append(item)
|
||||
|
@ -445,7 +445,7 @@ class ASCIItable():
|
|||
|
||||
# ------------------------------------------------------------------
|
||||
def info_clear(self):
|
||||
"""delete any info block"""
|
||||
"""Delete any info block"""
|
||||
self.info = []
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
|
@ -458,7 +458,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def data_skipLines(self,
|
||||
count):
|
||||
"""wind forward by count number of lines"""
|
||||
"""Wind forward by count number of lines"""
|
||||
for i in range(count):
|
||||
alive = self.data_read()
|
||||
|
||||
|
@ -468,7 +468,7 @@ class ASCIItable():
|
|||
def data_read(self,
|
||||
advance = True,
|
||||
respectLabels = True):
|
||||
"""read next line (possibly buffered) and parse it into data array"""
|
||||
"""Read next line (possibly buffered) and parse it into data array"""
|
||||
import shlex
|
||||
|
||||
self.line = self.__IO__['readBuffer'].pop(0) if len(self.__IO__['readBuffer']) > 0 \
|
||||
|
@ -490,7 +490,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def data_readArray(self,
|
||||
labels = []):
|
||||
"""read whole data of all (given) labels as numpy array"""
|
||||
"""Read whole data of all (given) labels as numpy array"""
|
||||
from collections import Iterable
|
||||
|
||||
try:
|
||||
|
@ -527,7 +527,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def data_write(self,
|
||||
delimiter = '\t'):
|
||||
"""write current data array and report alive output back"""
|
||||
"""Write current data array and report alive output back"""
|
||||
if len(self.data) == 0: return True
|
||||
|
||||
if isinstance(self.data[0],list):
|
||||
|
@ -539,7 +539,7 @@ class ASCIItable():
|
|||
def data_writeArray(self,
|
||||
fmt = None,
|
||||
delimiter = '\t'):
|
||||
"""write whole numpy array data"""
|
||||
"""Write whole numpy array data"""
|
||||
for row in self.data:
|
||||
try:
|
||||
output = [fmt % value for value in row] if fmt else list(map(repr,row))
|
||||
|
@ -562,7 +562,7 @@ class ASCIItable():
|
|||
# ------------------------------------------------------------------
|
||||
def data_set(self,
|
||||
what, where):
|
||||
"""update data entry in column "where". grows data array if needed."""
|
||||
"""Update data entry in column "where". grows data array if needed."""
|
||||
idx = -1
|
||||
try:
|
||||
idx = self.label_index(where)
|
||||
|
@ -589,7 +589,7 @@ class ASCIItable():
|
|||
grid,
|
||||
type = 'i',
|
||||
strict = False):
|
||||
"""read microstructure data (from .geom format)"""
|
||||
"""Read microstructure data (from .geom format)"""
|
||||
def datatype(item):
|
||||
return int(item) if type.lower() == 'i' else float(item)
|
||||
|
||||
|
|
|
@ -104,7 +104,7 @@ class Material():
|
|||
__slots__ = ['data']
|
||||
|
||||
def __init__(self,verbose=True):
|
||||
"""generates ordered list of parts"""
|
||||
"""Generates ordered list of parts"""
|
||||
self.parts = [
|
||||
'homogenization',
|
||||
'microstructure',
|
||||
|
@ -122,7 +122,7 @@ class Material():
|
|||
self.verbose = verbose
|
||||
|
||||
def __repr__(self):
|
||||
"""returns current configuration to be used as material.config"""
|
||||
"""Returns current configuration to be used as material.config"""
|
||||
me = []
|
||||
for part in self.parts:
|
||||
if self.verbose: print('doing '+part)
|
||||
|
|
|
@ -24,7 +24,7 @@ except(NameError):
|
|||
|
||||
|
||||
def lables_to_path(label, dsXMLPath=None):
|
||||
"""read the xml definition file and return the path."""
|
||||
"""Read the xml definition file and return the path."""
|
||||
if dsXMLPath is None:
|
||||
# use the default storage layout in DS_HDF5.xml
|
||||
if "h5table.pyc" in __file__:
|
||||
|
@ -48,7 +48,7 @@ def lables_to_path(label, dsXMLPath=None):
|
|||
|
||||
|
||||
class H5Table(object):
|
||||
"""light weight interface class for h5py
|
||||
"""Light weight interface class for h5py
|
||||
|
||||
DESCRIPTION
|
||||
-----------
|
||||
|
@ -85,7 +85,7 @@ class H5Table(object):
|
|||
h5f['/'].attrs['description'] = msg
|
||||
|
||||
def del_entry(self, feature_name):
|
||||
"""delete entry in HDF5 table"""
|
||||
"""Delete entry in HDF5 table"""
|
||||
dataType, h5f_path = lables_to_path(feature_name,
|
||||
dsXMLPath=self.dsXMLFile)
|
||||
with h5py.File(self.h5f_path, 'a') as h5f:
|
||||
|
@ -106,7 +106,7 @@ class H5Table(object):
|
|||
h5f.flush()
|
||||
|
||||
def get_data(self, feature_name=None):
|
||||
"""extract dataset from HDF5 table and return it in a numpy array"""
|
||||
"""Extract dataset from HDF5 table and return it in a numpy array"""
|
||||
dataType, h5f_path = lables_to_path(feature_name,
|
||||
dsXMLPath=self.dsXMLFile)
|
||||
with h5py.File(self.h5f_path, 'a') as h5f:
|
||||
|
@ -116,7 +116,7 @@ class H5Table(object):
|
|||
return rst_data
|
||||
|
||||
def add_data(self, feature_name, dataset, cmd_log=None):
|
||||
"""adding new feature into existing HDF5 file"""
|
||||
"""Adding new feature into existing HDF5 file"""
|
||||
dataType, h5f_path = lables_to_path(feature_name,
|
||||
dsXMLPath=self.dsXMLFile)
|
||||
with h5py.File(self.h5f_path, 'a') as h5f:
|
||||
|
@ -126,8 +126,7 @@ class H5Table(object):
|
|||
# record its state as fresh in the cmd log.
|
||||
try:
|
||||
del h5f[h5f_path]
|
||||
print "***deleting old {} from {}".format(feature_name,
|
||||
self.h5f_path)
|
||||
print("***deleting old {} from {}".format(feature_name,self.h5f_path))
|
||||
except:
|
||||
# if no cmd log, None will used
|
||||
cmd_log = str(cmd_log) + " [FRESH]"
|
||||
|
@ -138,7 +137,7 @@ class H5Table(object):
|
|||
h5f.flush()
|
||||
|
||||
def get_cmdlog(self, feature_name):
|
||||
"""get cmd history used to generate the feature"""
|
||||
"""Get cmd history used to generate the feature"""
|
||||
dataType, h5f_path = lables_to_path(feature_name,
|
||||
dsXMLPath=self.dsXMLFile)
|
||||
with h5py.File(self.h5f_path, 'a') as h5f:
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
|
||||
import os,sys,shutil
|
||||
import logging,logging.config
|
||||
import damask
|
||||
|
@ -191,7 +190,7 @@ class Test():
|
|||
def copy(self, mapA, mapB,
|
||||
A = [], B = []):
|
||||
"""
|
||||
copy list of files from (mapped) source to target.
|
||||
Copy list of files from (mapped) source to target.
|
||||
|
||||
mapA/B is one of self.fileInX.
|
||||
"""
|
||||
|
@ -382,7 +381,7 @@ class Test():
|
|||
line0 += 1
|
||||
|
||||
for i in range(dataLength):
|
||||
if not perLine: norm[i] = [np.max(norm[i]) for j in xrange(line0-len(skipLines))]
|
||||
if not perLine: norm[i] = [np.max(norm[i]) for j in range(line0-len(skipLines))]
|
||||
data[i] = np.reshape(data[i],[line0-len(skipLines),length[i]])
|
||||
if any(norm[i]) == 0.0 or absTol[i]:
|
||||
norm[i] = [1.0 for j in range(line0-len(skipLines))]
|
||||
|
@ -425,7 +424,7 @@ class Test():
|
|||
stdTol = 1.0e-6,
|
||||
preFilter = 1.0e-9):
|
||||
"""
|
||||
calculate statistics of tables
|
||||
Calculate statistics of tables
|
||||
|
||||
threshold can be used to ignore small values (a negative number disables this feature)
|
||||
"""
|
||||
|
@ -478,7 +477,7 @@ class Test():
|
|||
rtol = 1e-5,
|
||||
atol = 1e-8,
|
||||
debug = False):
|
||||
"""compare multiple tables with np.allclose"""
|
||||
"""Compare multiple tables with np.allclose"""
|
||||
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
||||
files = [str(files)]
|
||||
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
# damask utility functions
|
||||
import sys,time,random,threading,os,subprocess,shlex
|
||||
import numpy as np
|
||||
from optparse import Option
|
||||
|
@ -36,7 +35,7 @@ class bcolors:
|
|||
|
||||
# -----------------------------
|
||||
def srepr(arg,glue = '\n'):
|
||||
"""joins arguments as individual lines"""
|
||||
"""Joins arguments as individual lines"""
|
||||
if (not hasattr(arg, "strip") and
|
||||
hasattr(arg, "__getitem__") or
|
||||
hasattr(arg, "__iter__")):
|
||||
|
@ -45,21 +44,21 @@ def srepr(arg,glue = '\n'):
|
|||
|
||||
# -----------------------------
|
||||
def croak(what, newline = True):
|
||||
"""writes formated to stderr"""
|
||||
"""Writes formated to stderr"""
|
||||
sys.stderr.write(srepr(what,glue = '\n') + ('\n' if newline else ''))
|
||||
sys.stderr.flush()
|
||||
|
||||
# -----------------------------
|
||||
def report(who = None,
|
||||
what = None):
|
||||
"""reports script and file name"""
|
||||
"""Reports script and file name"""
|
||||
croak( (emph(who)+': ' if who else '') + (what if what else '') )
|
||||
|
||||
|
||||
# -----------------------------
|
||||
def report_geom(info,
|
||||
what = ['grid','size','origin','homogenization','microstructures']):
|
||||
"""reports (selected) geometry information"""
|
||||
"""Reports (selected) geometry information"""
|
||||
output = {
|
||||
'grid' : 'grid a b c: {}'.format(' x '.join(map(str,info['grid' ]))),
|
||||
'size' : 'size x y z: {}'.format(' x '.join(map(str,info['size' ]))),
|
||||
|
@ -71,24 +70,24 @@ def report_geom(info,
|
|||
|
||||
# -----------------------------
|
||||
def emph(what):
|
||||
"""boldens string"""
|
||||
"""Boldens string"""
|
||||
return bcolors.BOLD+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
def deemph(what):
|
||||
"""dims string"""
|
||||
"""Dims string"""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
def delete(what):
|
||||
"""dims string"""
|
||||
"""Dims string"""
|
||||
return bcolors.DIM+srepr(what)+bcolors.ENDC
|
||||
|
||||
# -----------------------------
|
||||
def execute(cmd,
|
||||
streamIn = None,
|
||||
wd = './'):
|
||||
"""executes a command in given directory and returns stdout and stderr for optional stdin"""
|
||||
"""Executes a command in given directory and returns stdout and stderr for optional stdin"""
|
||||
initialPath = os.getcwd()
|
||||
os.chdir(wd)
|
||||
process = subprocess.Popen(shlex.split(cmd),
|
||||
|
@ -127,7 +126,7 @@ def gridIndex(location,res):
|
|||
# -----------------------------
|
||||
class extendableOption(Option):
|
||||
"""
|
||||
used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||||
Used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
||||
|
||||
taken from online tutorial http://docs.python.org/library/optparse.html
|
||||
"""
|
||||
|
@ -146,7 +145,7 @@ class extendableOption(Option):
|
|||
|
||||
# -----------------------------
|
||||
class backgroundMessage(threading.Thread):
|
||||
"""reporting with animation to indicate progress"""
|
||||
"""Reporting with animation to indicate progress"""
|
||||
|
||||
choices = {'bounce': ['_', 'o', 'O', '°', '‾', '‾', '°', 'O', 'o', '_'],
|
||||
'spin': ['◜', '◝', '◞', '◟'],
|
||||
|
@ -168,7 +167,7 @@ class backgroundMessage(threading.Thread):
|
|||
}
|
||||
|
||||
def __init__(self,symbol = None,wait = 0.1):
|
||||
"""sets animation symbol"""
|
||||
"""Sets animation symbol"""
|
||||
super(backgroundMessage, self).__init__()
|
||||
self._stop = threading.Event()
|
||||
self.message = ''
|
||||
|
@ -179,7 +178,7 @@ class backgroundMessage(threading.Thread):
|
|||
self.waittime = wait
|
||||
|
||||
def __quit__(self):
|
||||
"""cleans output"""
|
||||
"""Cleans output"""
|
||||
length = len(self.symbols[self.counter] + self.gap + self.message)
|
||||
sys.stderr.write(chr(8)*length + ' '*length + chr(8)*length)
|
||||
sys.stderr.write('')
|
||||
|
@ -282,7 +281,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
|
|||
return grad
|
||||
|
||||
def _int2extFunc(bounds):
|
||||
"""transform internal parameters into external parameters."""
|
||||
"""Transform internal parameters into external parameters."""
|
||||
local = [_int2extLocal(b) for b in bounds]
|
||||
def _transform_i2e(p_int):
|
||||
p_ext = np.empty_like(p_int)
|
||||
|
@ -291,7 +290,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
|
|||
return _transform_i2e
|
||||
|
||||
def _ext2intFunc(bounds):
|
||||
"""transform external parameters into internal parameters."""
|
||||
"""Transform external parameters into internal parameters."""
|
||||
local = [_ext2intLocal(b) for b in bounds]
|
||||
def _transform_e2i(p_ext):
|
||||
p_int = np.empty_like(p_ext)
|
||||
|
@ -300,7 +299,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
|
|||
return _transform_e2i
|
||||
|
||||
def _int2extLocal(bound):
|
||||
"""transform a single internal parameter to an external parameter."""
|
||||
"""Transform a single internal parameter to an external parameter."""
|
||||
lower, upper = bound
|
||||
if lower is None and upper is None: # no constraints
|
||||
return lambda x: x
|
||||
|
@ -312,7 +311,7 @@ def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
|
|||
return lambda x: lower + ((upper - lower)/2.0)*(np.sin(x) + 1.0)
|
||||
|
||||
def _ext2intLocal(bound):
|
||||
"""transform a single external parameter to an internal parameter."""
|
||||
"""Transform a single external parameter to an internal parameter."""
|
||||
lower, upper = bound
|
||||
if lower is None and upper is None: # no constraints
|
||||
return lambda x: x
|
||||
|
|
|
@ -69,7 +69,7 @@ for name in filenames:
|
|||
if columnMissing: continue
|
||||
|
||||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
table.labels_append(['%i_coord'%(i+1) for i in xrange(3)]) # extend ASCII header with new labels
|
||||
table.labels_append(['%i_coord'%(i+1) for i in range(3)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -53,7 +53,7 @@ if options.labels is None or options.formulas is None:
|
|||
if len(options.labels) != len(options.formulas):
|
||||
parser.error('number of labels ({}) and formulas ({}) do not match.'.format(len(options.labels),len(options.formulas)))
|
||||
|
||||
for i in xrange(len(options.formulas)):
|
||||
for i in range(len(options.formulas)):
|
||||
options.formulas[i] = options.formulas[i].replace(';',',')
|
||||
|
||||
# ------------------------------------- loop over input files --------------------------------------
|
||||
|
@ -154,7 +154,7 @@ for name in filenames:
|
|||
# ----------------------------------- line 1: assemble header --------------------------------------
|
||||
|
||||
for newby in newbies:
|
||||
table.labels_append(['{}_{}'.format(i+1,newby) for i in xrange(resultDim[newby])]
|
||||
table.labels_append(['{}_{}'.format(i+1,newby) for i in range(resultDim[newby])]
|
||||
if resultDim[newby] > 1 else newby)
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
|
|
|
@ -68,7 +68,7 @@ for name in filenames:
|
|||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(['{}_Cauchy'.format(i+1) for i in xrange(9)]) # extend ASCII header with new labels
|
||||
table.labels_append(['{}_Cauchy'.format(i+1) for i in range(9)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -17,7 +17,7 @@ def cell2node(cellData,grid):
|
|||
nodeData = 0.0
|
||||
datalen = np.array(cellData.shape[3:]).prod()
|
||||
|
||||
for i in xrange(datalen):
|
||||
for i in range(datalen):
|
||||
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i],
|
||||
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
|
||||
mode = 'wrap',
|
||||
|
@ -33,7 +33,7 @@ def cell2node(cellData,grid):
|
|||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
def deformationAvgFFT(F,grid,size,nodal=False,transformed=False):
|
||||
"""calculate average cell center (or nodal) deformation for deformation gradient field specified in each grid cell"""
|
||||
"""Calculate average cell center (or nodal) deformation for deformation gradient field specified in each grid cell"""
|
||||
if nodal:
|
||||
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
|
||||
np.linspace(0,size[1],1+grid[1]),
|
||||
|
@ -55,7 +55,7 @@ def deformationAvgFFT(F,grid,size,nodal=False,transformed=False):
|
|||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
|
||||
"""calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
|
||||
"""Calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
|
||||
integrator = 0.5j * size / math.pi
|
||||
|
||||
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
|
||||
|
@ -131,7 +131,7 @@ def volTetrahedron(coords):
|
|||
|
||||
def volumeMismatch(size,F,nodes):
|
||||
"""
|
||||
calculates the volume mismatch
|
||||
Calculates the volume mismatch
|
||||
|
||||
volume mismatch is defined as the difference between volume of reconstructed
|
||||
(compatible) cube and determinant of defgrad at the FP
|
||||
|
@ -142,9 +142,9 @@ def volumeMismatch(size,F,nodes):
|
|||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
# calculate actual volume and volume resulting from deformation gradient
|
||||
for k in xrange(grid[2]):
|
||||
for j in xrange(grid[1]):
|
||||
for i in xrange(grid[0]):
|
||||
for k in range(grid[2]):
|
||||
for j in range(grid[1]):
|
||||
for i in range(grid[0]):
|
||||
coords[0,0:3] = nodes[k, j, i ,0:3]
|
||||
coords[1,0:3] = nodes[k ,j, i+1,0:3]
|
||||
coords[2,0:3] = nodes[k ,j+1,i+1,0:3]
|
||||
|
@ -190,9 +190,9 @@ def shapeMismatch(size,F,nodes,centres):
|
|||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
# compare deformed original and deformed positions to actual positions
|
||||
for k in xrange(grid[2]):
|
||||
for j in xrange(grid[1]):
|
||||
for i in xrange(grid[0]):
|
||||
for k in range(grid[2]):
|
||||
for j in range(grid[1]):
|
||||
for i in range(grid[0]):
|
||||
sMismatch[k,j,i] = \
|
||||
+ np.linalg.norm(nodes[k, j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[0,0:3]))\
|
||||
+ np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\
|
||||
|
@ -288,7 +288,7 @@ for name in filenames:
|
|||
np.zeros((table.data.shape[0],
|
||||
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
|
||||
|
||||
coords = [np.unique(table.data[:,9+i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,9+i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
@ -324,9 +324,9 @@ for name in filenames:
|
|||
volumeMismatch = volumeMismatch(size,table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),nodes)
|
||||
|
||||
# ------------------------------------------ output data -------------------------------------------
|
||||
for i in xrange(grid[2]):
|
||||
for j in xrange(grid[1]):
|
||||
for k in xrange(grid[0]):
|
||||
for i in range(grid[2]):
|
||||
for j in range(grid[1]):
|
||||
for k in range(grid[0]):
|
||||
table.data_read()
|
||||
if options.shape: table.data_append(shapeMismatch[i,j,k])
|
||||
if options.volume: table.data_append(volumeMismatch[i,j,k])
|
||||
|
|
|
@ -59,7 +59,7 @@ for name in filenames:
|
|||
dims.append(dim)
|
||||
columns.append(table.label_index(what))
|
||||
table.labels_append('cum({})'.format(what) if dim == 1 else
|
||||
['{}_cum({})'.format(i+1,what) for i in xrange(dim)] ) # extend ASCII header with new labels
|
||||
['{}_cum({})'.format(i+1,what) for i in range(dim)] ) # extend ASCII header with new labels
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
|
|
|
@ -24,24 +24,24 @@ def curlFFT(geomdim,field):
|
|||
# differentiation in Fourier space
|
||||
k_s = np.zeros([3],'i')
|
||||
TWOPIIMG = 2.0j*math.pi
|
||||
for i in xrange(grid[2]):
|
||||
for i in range(grid[2]):
|
||||
k_s[0] = i
|
||||
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||
|
||||
for j in xrange(grid[1]):
|
||||
for j in range(grid[1]):
|
||||
k_s[1] = j
|
||||
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||
|
||||
for k in xrange(grid[0]//2+1):
|
||||
for k in range(grid[0]//2+1):
|
||||
k_s[2] = k
|
||||
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
|
||||
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
|
||||
|
||||
if dataType == 'tensor':
|
||||
for l in xrange(3):
|
||||
for l in range(3):
|
||||
curl_fourier[i,j,k,0,l] = ( field_fourier[i,j,k,l,2]*xi[1]\
|
||||
-field_fourier[i,j,k,l,1]*xi[2]) *TWOPIIMG
|
||||
curl_fourier[i,j,k,1,l] = (-field_fourier[i,j,k,l,2]*xi[0]\
|
||||
|
@ -136,14 +136,14 @@ for name in filenames:
|
|||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for type, data in items.iteritems():
|
||||
for label in data['active']:
|
||||
table.labels_append(['{}_curlFFT({})'.format(i+1,label) for i in xrange(data['dim'])]) # extend ASCII header with new labels
|
||||
table.labels_append(['{}_curlFFT({})'.format(i+1,label) for i in range(data['dim'])]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
|
|
@ -85,7 +85,7 @@ for name in filenames:
|
|||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for type, data in items.iteritems():
|
||||
for label in data['active']:
|
||||
table.labels_append(['{}_dev({})'.format(i+1,label) for i in xrange(data['dim'])] + \
|
||||
table.labels_append(['{}_dev({})'.format(i+1,label) for i in range(data['dim'])] + \
|
||||
(['sph({})'.format(label)] if options.spherical else [])) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ def cell2node(cellData,grid):
|
|||
nodeData = 0.0
|
||||
datalen = np.array(cellData.shape[3:]).prod()
|
||||
|
||||
for i in xrange(datalen):
|
||||
for i in range(datalen):
|
||||
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i],
|
||||
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
|
||||
mode = 'wrap',
|
||||
|
@ -33,7 +33,7 @@ def cell2node(cellData,grid):
|
|||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
def displacementAvgFFT(F,grid,size,nodal=False,transformed=False):
|
||||
"""calculate average cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
|
||||
"""Calculate average cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
|
||||
if nodal:
|
||||
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
|
||||
np.linspace(0,size[1],1+grid[1]),
|
||||
|
@ -55,7 +55,7 @@ def displacementAvgFFT(F,grid,size,nodal=False,transformed=False):
|
|||
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
|
||||
"""calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
|
||||
"""Calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
|
||||
integrator = 0.5j * size / math.pi
|
||||
|
||||
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
|
||||
|
@ -167,7 +167,7 @@ for name in filenames:
|
|||
np.zeros((table.data.shape[0],
|
||||
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
|
||||
|
||||
coords = [np.unique(table.data[:,9+i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,9+i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
@ -196,16 +196,16 @@ for name in filenames:
|
|||
table.labels_clear()
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append((['{}_pos' .format(i+1) for i in xrange(3)] if options.nodal else []) +
|
||||
['{}_avg({}).{}' .format(i+1,options.defgrad,options.pos) for i in xrange(3)] +
|
||||
['{}_fluct({}).{}'.format(i+1,options.defgrad,options.pos) for i in xrange(3)] )
|
||||
table.labels_append((['{}_pos' .format(i+1) for i in range(3)] if options.nodal else []) +
|
||||
['{}_avg({}).{}' .format(i+1,options.defgrad,options.pos) for i in range(3)] +
|
||||
['{}_fluct({}).{}'.format(i+1,options.defgrad,options.pos) for i in range(3)] )
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ output data -------------------------------------------
|
||||
|
||||
Zrange = np.linspace(0,size[2],1+grid[2]) if options.nodal else xrange(grid[2])
|
||||
Yrange = np.linspace(0,size[1],1+grid[1]) if options.nodal else xrange(grid[1])
|
||||
Xrange = np.linspace(0,size[0],1+grid[0]) if options.nodal else xrange(grid[0])
|
||||
Zrange = np.linspace(0,size[2],1+grid[2]) if options.nodal else range(grid[2])
|
||||
Yrange = np.linspace(0,size[1],1+grid[1]) if options.nodal else range(grid[1])
|
||||
Xrange = np.linspace(0,size[0],1+grid[0]) if options.nodal else range(grid[0])
|
||||
|
||||
for i,z in enumerate(Zrange):
|
||||
for j,y in enumerate(Yrange):
|
||||
|
|
|
@ -21,23 +21,23 @@ def divFFT(geomdim,field):
|
|||
# differentiation in Fourier space
|
||||
k_s = np.zeros([3],'i')
|
||||
TWOPIIMG = 2.0j*math.pi
|
||||
for i in xrange(grid[2]):
|
||||
for i in range(grid[2]):
|
||||
k_s[0] = i
|
||||
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||
|
||||
for j in xrange(grid[1]):
|
||||
for j in range(grid[1]):
|
||||
k_s[1] = j
|
||||
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||
|
||||
for k in xrange(grid[0]//2+1):
|
||||
for k in range(grid[0]//2+1):
|
||||
k_s[2] = k
|
||||
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
|
||||
xi = (k_s/geomdim)[2::-1].astype('c16') # reversing the field input order
|
||||
if n == 9: # tensor, 3x3 -> 3
|
||||
for l in xrange(3):
|
||||
for l in range(3):
|
||||
div_fourier[i,j,k,l] = sum(field_fourier[i,j,k,l,0:3]*xi) *TWOPIIMG
|
||||
elif n == 3: # vector, 3 -> 1
|
||||
div_fourier[i,j,k] = sum(field_fourier[i,j,k,0:3]*xi) *TWOPIIMG
|
||||
|
@ -123,14 +123,14 @@ for name in filenames:
|
|||
for type, data in items.iteritems():
|
||||
for label in data['active']:
|
||||
table.labels_append(['divFFT({})'.format(label) if type == 'vector' else
|
||||
'{}_divFFT({})'.format(i+1,label) for i in xrange(data['dim']//3)]) # extend ASCII header with new labels
|
||||
'{}_divFFT({})'.format(i+1,label) for i in range(data['dim']//3)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
|
|
@ -20,13 +20,13 @@ def periodic_3Dpad(array, rimdim=(1,1,1)):
|
|||
rimdim[2]:rimdim[2]+size[2]] = array
|
||||
|
||||
p = np.zeros(3,'i')
|
||||
for side in xrange(3):
|
||||
for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]):
|
||||
for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]):
|
||||
for p[side%3] in xrange(rimdim[side%3]):
|
||||
for side in range(3):
|
||||
for p[(side+2)%3] in range(padded.shape[(side+2)%3]):
|
||||
for p[(side+1)%3] in range(padded.shape[(side+1)%3]):
|
||||
for p[side%3] in range(rimdim[side%3]):
|
||||
spot = (p-rimdim)%size
|
||||
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
||||
for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]):
|
||||
for p[side%3] in range(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]):
|
||||
spot = (p-rimdim)%size
|
||||
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
||||
return padded
|
||||
|
@ -178,7 +178,7 @@ for name in filenames:
|
|||
|
||||
table.data_readArray()
|
||||
|
||||
coords = [np.unique(table.data[:,coordCol+i]) for i in xrange(coordDim)]
|
||||
coords = [np.unique(table.data[:,coordCol+i]) for i in range(coordDim)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords)+[1]*(3-len(coords)),'i')
|
||||
|
@ -215,7 +215,7 @@ for name in filenames:
|
|||
# ...reflects number of unique neighbors
|
||||
uniques = np.where(diffToNeighbor[1:-1,1:-1,1:-1,0] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
||||
|
||||
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
|
||||
for i in range(1,len(neighborhood)): # check remaining points in neighborhood
|
||||
uniques += np.where(np.logical_and(
|
||||
diffToNeighbor[1:-1,1:-1,1:-1,i] != 0, # not myself?
|
||||
diffToNeighbor[1:-1,1:-1,1:-1,i] != diffToNeighbor[1:-1,1:-1,1:-1,i-1],
|
||||
|
@ -229,7 +229,7 @@ for name in filenames:
|
|||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
||||
|
||||
distance = distance.reshape([len(feature_list),grid.prod(),1],order='F')
|
||||
for i in xrange(len(feature_list)):
|
||||
for i in range(len(feature_list)):
|
||||
stack.append(distance[i,:])
|
||||
|
||||
# ------------------------------------------ output result -----------------------------------------
|
||||
|
|
|
@ -24,17 +24,17 @@ def gradFFT(geomdim,field):
|
|||
# differentiation in Fourier space
|
||||
k_s = np.zeros([3],'i')
|
||||
TWOPIIMG = 2.0j*math.pi
|
||||
for i in xrange(grid[2]):
|
||||
for i in range(grid[2]):
|
||||
k_s[0] = i
|
||||
if grid[2]%2 == 0 and i == grid[2]//2: k_s[0] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif i > grid[2]//2: k_s[0] -= grid[2]
|
||||
|
||||
for j in xrange(grid[1]):
|
||||
for j in range(grid[1]):
|
||||
k_s[1] = j
|
||||
if grid[1]%2 == 0 and j == grid[1]//2: k_s[1] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
elif j > grid[1]//2: k_s[1] -= grid[1]
|
||||
|
||||
for k in xrange(grid[0]//2+1):
|
||||
for k in range(grid[0]//2+1):
|
||||
k_s[2] = k
|
||||
if grid[0]%2 == 0 and k == grid[0]//2: k_s[2] = 0 # for even grid, set Nyquist freq to 0 (Johnson, MIT, 2011)
|
||||
|
||||
|
@ -126,14 +126,14 @@ for name in filenames:
|
|||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for type, data in items.iteritems():
|
||||
for label in data['active']:
|
||||
table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in xrange(3 * data['dim'])]) # extend ASCII header with new labels
|
||||
table.labels_append(['{}_gradFFT({})'.format(i+1,label) for i in range(3 * data['dim'])]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
table.data_readArray()
|
||||
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
|
|
@ -108,7 +108,7 @@ for name in filenames:
|
|||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(['{}_IPF_{:g}{:g}{:g}_{sym}'.format(i+1,*options.pole,sym = options.symmetry.lower()) for i in xrange(3)])
|
||||
table.labels_append(['{}_IPF_{:g}{:g}{:g}_{sym}'.format(i+1,*options.pole,sym = options.symmetry.lower()) for i in range(3)])
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -131,9 +131,9 @@ for name in filenames:
|
|||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
for output in options.output:
|
||||
if output == 'quaternion': table.labels_append(['{}_{}_{}({})'.format(i+1,'quat',options.symmetry,label) for i in xrange(4)])
|
||||
elif output == 'rodrigues': table.labels_append(['{}_{}_{}({})'.format(i+1,'rodr',options.symmetry,label) for i in xrange(3)])
|
||||
elif output == 'eulers': table.labels_append(['{}_{}_{}({})'.format(i+1,'eulr',options.symmetry,label) for i in xrange(3)])
|
||||
if output == 'quaternion': table.labels_append(['{}_{}_{}({})'.format(i+1,'quat',options.symmetry,label) for i in range(4)])
|
||||
elif output == 'rodrigues': table.labels_append(['{}_{}_{}({})'.format(i+1,'rodr',options.symmetry,label) for i in range(3)])
|
||||
elif output == 'eulers': table.labels_append(['{}_{}_{}({})'.format(i+1,'eulr',options.symmetry,label) for i in range(3)])
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -69,7 +69,7 @@ for name in filenames:
|
|||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(['%i_S'%(i+1) for i in xrange(9)]) # extend ASCII header with new labels
|
||||
table.labels_append(['%i_S'%(i+1) for i in range(9)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -113,7 +113,7 @@ for name in filenames:
|
|||
# ------------------------------------------ assemble header ---------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(['{}_pole_{}{}{}'.format(i+1,*options.pole) for i in xrange(2)])
|
||||
table.labels_append(['{}_pole_{}{}{}'.format(i+1,*options.pole) for i in range(2)])
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
|
|
@ -199,7 +199,7 @@ if options.lattice in latticeChoices[:2]:
|
|||
c_normal = slipSystems[options.lattice][:,3:]
|
||||
elif options.lattice == latticeChoices[2]:
|
||||
# convert 4 Miller index notation of hex to orthogonal 3 Miller index notation
|
||||
for i in xrange(len(c_direction)):
|
||||
for i in range(len(c_direction)):
|
||||
c_direction[i] = np.array([slipSystems['hex'][i,0]*1.5,
|
||||
(slipSystems['hex'][i,0] + 2.*slipSystems['hex'][i,1])*0.5*np.sqrt(3),
|
||||
slipSystems['hex'][i,3]*options.CoverA,
|
||||
|
|
|
@ -57,8 +57,8 @@ for name in filenames:
|
|||
if dim != data['dim']: remarks.append('column {} is not a {}...'.format(what,type))
|
||||
else:
|
||||
items[type]['column'].append(table.label_index(what))
|
||||
table.labels_append(['{}_eigval({})'.format(i+1,what) for i in xrange(3)]) # extend ASCII header with new labels
|
||||
table.labels_append(['{}_eigvec({})'.format(i+1,what) for i in xrange(9)]) # extend ASCII header with new labels
|
||||
table.labels_append(['{}_eigval({})'.format(i+1,what) for i in range(3)]) # extend ASCII header with new labels
|
||||
table.labels_append(['{}_eigvec({})'.format(i+1,what) for i in range(9)]) # extend ASCII header with new labels
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
|
|
|
@ -112,7 +112,7 @@ for name in filenames:
|
|||
table.labels_append(['{}_{}({}){}'.format(i+1, # extend ASCII header with new labels
|
||||
theStrain,
|
||||
theStretch,
|
||||
what if what != 'f' else '') for i in xrange(9)])
|
||||
what if what != 'f' else '') for i in range(9)])
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
if errors != []:
|
||||
|
|
|
@ -79,7 +79,7 @@ incNum = int(asciiTable.data[asciiTable.label_index('inc'), 0])
|
|||
fullTable = np.copy(asciiTable.data) # deep copy all data, just to be safe
|
||||
labels = asciiTable.labels()
|
||||
labels_idx = [asciiTable.label_index(label) for label in labels]
|
||||
featuresDim = [labels_idx[i+1] - labels_idx[i] for i in xrange(len(labels)-1)]
|
||||
featuresDim = [labels_idx[i+1] - labels_idx[i] for i in range(len(labels)-1)]
|
||||
featuresDim.append(fullTable.shape[1] - labels_idx[-1])
|
||||
|
||||
# ----- figure out size and grid ----- #
|
||||
|
@ -113,7 +113,7 @@ h5f.add_data("Vz", Vz, cmd_log=cmd_log)
|
|||
|
||||
# add the rest of data from table
|
||||
labelsProcessed = ['inc']
|
||||
for fi in xrange(len(labels)):
|
||||
for fi in range(len(labels)):
|
||||
featureName = labels[fi]
|
||||
# remove trouble maker "("" and ")" from label/feature name
|
||||
if "(" in featureName:
|
||||
|
@ -136,7 +136,7 @@ for fi in xrange(len(labels)):
|
|||
# mshGridDim[2],
|
||||
# dataset.shape[1]))
|
||||
# write out data
|
||||
print "adding {}...".format(featureName)
|
||||
print("adding {}...".format(featureName))
|
||||
h5f.add_data(featureName, dataset, cmd_log=cmd_log)
|
||||
# write down the processed label
|
||||
labelsProcessed.append(featureName)
|
||||
|
|
|
@ -94,7 +94,7 @@ for name in filenames:
|
|||
table.data_readArray()
|
||||
|
||||
if (any(options.grid) == 0 or any(options.size) == 0.0):
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
|
|
@ -127,12 +127,12 @@ for name in filenames:
|
|||
weights=None if options.weight is None else table.data[:,2])
|
||||
|
||||
if options.normCol:
|
||||
for x in xrange(options.bins[0]):
|
||||
for x in range(options.bins[0]):
|
||||
sum = np.sum(grid[x,:])
|
||||
if sum > 0.0:
|
||||
grid[x,:] /= sum
|
||||
if options.normRow:
|
||||
for y in xrange(options.bins[1]):
|
||||
for y in range(options.bins[1]):
|
||||
sum = np.sum(grid[:,y])
|
||||
if sum > 0.0:
|
||||
grid[:,y] /= sum
|
||||
|
@ -150,8 +150,8 @@ for name in filenames:
|
|||
|
||||
delta[2] = minmax[2,1]-minmax[2,0]
|
||||
|
||||
for x in xrange(options.bins[0]):
|
||||
for y in xrange(options.bins[1]):
|
||||
for x in range(options.bins[0]):
|
||||
for y in range(options.bins[1]):
|
||||
result[x,y,:] = [minmax[0,0]+delta[0]/options.bins[0]*(x+0.5),
|
||||
minmax[1,0]+delta[1]/options.bins[1]*(y+0.5),
|
||||
min(1.0,max(0.0,(grid[x,y]-minmax[2,0])/delta[2]))]
|
||||
|
|
|
@ -79,7 +79,7 @@ for name in filenames:
|
|||
table.data_readArray(options.pos)
|
||||
table.data_rewind()
|
||||
|
||||
coords = [np.unique(table.data[:,i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
@ -99,9 +99,9 @@ for name in filenames:
|
|||
data = np.zeros(outSize.tolist()+[len(table.labels(raw = True))])
|
||||
p = np.zeros(3,'i')
|
||||
|
||||
for p[2] in xrange(grid[2]):
|
||||
for p[1] in xrange(grid[1]):
|
||||
for p[0] in xrange(grid[0]):
|
||||
for p[2] in range(grid[2]):
|
||||
for p[1] in range(grid[1]):
|
||||
for p[0] in range(grid[0]):
|
||||
d = p*packing
|
||||
table.data_read()
|
||||
data[d[0]:d[0]+packing[0],
|
||||
|
@ -110,9 +110,9 @@ for name in filenames:
|
|||
: ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size
|
||||
elementSize = size/grid/packing
|
||||
elem = 1
|
||||
for c in xrange(outSize[2]):
|
||||
for b in xrange(outSize[1]):
|
||||
for a in xrange(outSize[0]):
|
||||
for c in range(outSize[2]):
|
||||
for b in range(outSize[1]):
|
||||
for a in range(outSize[0]):
|
||||
data[a,b,c,colCoord:colCoord+3] = [a+0.5,b+0.5,c+0.5]*elementSize
|
||||
if colElem != -1: data[a,b,c,colElem] = elem
|
||||
table.data = data[a,b,c,:].tolist()
|
||||
|
|
|
@ -110,18 +110,18 @@ for name in filenames:
|
|||
table.data_readArray()
|
||||
rows,cols = table.data.shape
|
||||
|
||||
table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn
|
||||
table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn
|
||||
|
||||
values,index = np.unique(table.data[:,grpColumn], return_index = True) # unique grpColumn values and their positions
|
||||
index = np.append(index,rows) # add termination position
|
||||
grpTable = np.empty((len(values), cols)) # initialize output
|
||||
values,index = np.unique(table.data[:,grpColumn], return_index = True) # unique grpColumn values and their positions
|
||||
index = np.append(index,rows) # add termination position
|
||||
grpTable = np.empty((len(values), cols)) # initialize output
|
||||
|
||||
for i in xrange(len(values)): # iterate over groups (unique values in grpColumn)
|
||||
for i in range(len(values)): # iterate over groups (unique values in grpColumn)
|
||||
if options.periodic :
|
||||
grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function
|
||||
grpTable[i] = periodicAverage(table.data[index[i]:index[i+1]],options.boundary) # apply periodicAverage mapping function
|
||||
else :
|
||||
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function
|
||||
if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value
|
||||
grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function
|
||||
if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value
|
||||
|
||||
table.data = grpTable
|
||||
|
||||
|
|
|
@ -56,7 +56,7 @@ parser.set_defaults(condition=None)
|
|||
(options, filenames) = parser.parse_args()
|
||||
|
||||
# ----- parse formulas ----- #
|
||||
for i in xrange(len(options.formulas)):
|
||||
for i in range(len(options.formulas)):
|
||||
options.formulas[i] = options.formulas[i].replace(';', ',')
|
||||
|
||||
# ----- loop over input files ----- #
|
||||
|
@ -64,7 +64,7 @@ for name in filenames:
|
|||
try:
|
||||
h5f = damask.H5Table(name, new_file=False)
|
||||
except:
|
||||
print "!!!Cannot process {}".format(name)
|
||||
print("!!!Cannot process {}".format(name))
|
||||
continue
|
||||
damask.util.report(scriptName, name)
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ scriptID = ' '.join([scriptName, damask.version])
|
|||
|
||||
|
||||
def getCauchy(f, p):
|
||||
"""return Cauchy stress for given f and p"""
|
||||
"""Return Cauchy stress for given f and p"""
|
||||
# [Cauchy] = (1/det(F)) * [P].[F_transpose]
|
||||
f = f.reshape((3, 3))
|
||||
p = p.reshape((3, 3))
|
||||
|
|
|
@ -119,7 +119,7 @@ for name in filenames:
|
|||
|
||||
# calculate the IPF color
|
||||
rgbArrays = np.zeros((orieData.shape[0], 3))
|
||||
for ci in xrange(rgbArrays.shape[0]):
|
||||
for ci in range(rgbArrays.shape[0]):
|
||||
if inputtype == 'eulers':
|
||||
o = damask.Orientation(Eulers=np.array(orieData[ci, :])*toRadians,
|
||||
symmetry=options.symmetry).reduced()
|
||||
|
|
|
@ -14,7 +14,7 @@ scriptID = ' '.join([scriptName, damask.version])
|
|||
|
||||
# ----- Helper functions ----- #
|
||||
def calcMises(what, tensor):
|
||||
"""calculate von Mises equivalent"""
|
||||
"""Calculate von Mises equivalent"""
|
||||
dev = tensor - np.trace(tensor)/3.0*np.eye(3)
|
||||
symdev = 0.5*(dev+dev.T)
|
||||
return math.sqrt(np.sum(symdev*symdev.T) *
|
||||
|
@ -61,7 +61,7 @@ for name in filenames:
|
|||
|
||||
# calculate von Mises equivalent row by row
|
||||
vmStress = np.zeros(tnsr.shape[0])
|
||||
for ri in xrange(tnsr.shape[0]):
|
||||
for ri in range(tnsr.shape[0]):
|
||||
stressTnsr = tnsr[ri, :].reshape(3, 3)
|
||||
vmStress[ri] = calcMises('stress', stressTnsr)
|
||||
|
||||
|
@ -77,7 +77,7 @@ for name in filenames:
|
|||
if options.strain is not None:
|
||||
tnsr = h5f.get_data(options.strain)
|
||||
vmStrain = np.zeros(tnsr.shape[0])
|
||||
for ri in xrange(tnsr.shape[0]):
|
||||
for ri in range(tnsr.shape[0]):
|
||||
strainTnsr = tnsr[ri, :].reshape(3, 3)
|
||||
vmStrain[ri] = calcMises('strain', strainTnsr)
|
||||
label = "Mises{}".format(options.strain)
|
||||
|
|
|
@ -25,13 +25,13 @@ def operator(stretch, strain, eigenvalues):
|
|||
|
||||
|
||||
def calcEPS(defgrads, stretchType, strainType):
|
||||
"""calculate specific type of strain tensor"""
|
||||
"""Calculate specific type of strain tensor"""
|
||||
eps = np.zeros(defgrads.shape) # initialize container
|
||||
|
||||
# TODO:
|
||||
# this loop can use some performance boost
|
||||
# (multi-threading?)
|
||||
for ri in xrange(defgrads.shape[0]):
|
||||
for ri in range(defgrads.shape[0]):
|
||||
f = defgrads[ri, :].reshape(3, 3)
|
||||
U, S, Vh = np.linalg.svd(f)
|
||||
R = np.dot(U, Vh) # rotation of polar decomposition
|
||||
|
|
|
@ -29,7 +29,7 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
|
||||
# ----- HELPER FUNCTIONS -----#
|
||||
def addTopLvlCmt(xmlstr, topLevelCmt):
|
||||
"""add top level comment to string from ET"""
|
||||
"""Add top level comment to string from ET"""
|
||||
# a quick hack to add the top level comment to XML file
|
||||
# --> somehow Elementtree does not provide this functionality
|
||||
# --> by default
|
||||
|
@ -42,7 +42,7 @@ def addTopLvlCmt(xmlstr, topLevelCmt):
|
|||
# MAIN
|
||||
# --------------------------------------------------------------------
|
||||
|
||||
msg = 'generate Xdmf wrapper for HDF5 file.'
|
||||
msg = 'Generate Xdmf wrapper for HDF5 file.'
|
||||
parser = OptionParser(option_class=damask.extendableOption,
|
||||
usage='%prog options [file[s]]',
|
||||
description = msg,
|
||||
|
@ -108,7 +108,7 @@ labelsProcessed = ['Vx', 'Vy', 'Vz']
|
|||
# walk through each attributes
|
||||
for label in labels:
|
||||
if label in labelsProcessed: continue
|
||||
print "adding {}...".format(label)
|
||||
print("adding {}...".format(label))
|
||||
attr = ET.SubElement(grid, 'Attribute',
|
||||
Name=label,
|
||||
Type="None",
|
||||
|
|
|
@ -21,24 +21,24 @@ scriptID = ' '.join([scriptName, damask.version])
|
|||
|
||||
# ----- HELPER FUNCTION ----- #
|
||||
def getMeshFromXYZ(xyzArray, mode):
|
||||
"""calc Vx,Vy,Vz vectors for vtk rectangular mesh"""
|
||||
"""Calc Vx,Vy,Vz vectors for vtk rectangular mesh"""
|
||||
# NOTE:
|
||||
# --> np.unique will automatically sort the list
|
||||
# --> although not exactly n(1), but since mesh dimension should
|
||||
# small anyway, so this is still light weight.
|
||||
dim = xyzArray.shape[1] # 2D:2, 3D:3
|
||||
coords = [np.unique(xyzArray[:, i]) for i in xrange(dim)]
|
||||
coords = [np.unique(xyzArray[:, i]) for i in range(dim)]
|
||||
|
||||
if mode == 'cell':
|
||||
# since x, y, z might now have the same number of elements,
|
||||
# we have to deal with them individually
|
||||
for ri in xrange(dim):
|
||||
for ri in range(dim):
|
||||
vctr_pt = coords[ri]
|
||||
vctr_cell = np.empty(len(vctr_pt)+1)
|
||||
# calculate first and last end point
|
||||
vctr_cell[0] = vctr_pt[0] - 0.5*abs(vctr_pt[1] - vctr_pt[0])
|
||||
vctr_cell[-1] = vctr_pt[-1] + 0.5*abs(vctr_pt[-2] - vctr_pt[-1])
|
||||
for cj in xrange(1, len(vctr_cell)-1):
|
||||
for cj in range(1, len(vctr_cell)-1):
|
||||
vctr_cell[cj] = 0.5*(vctr_pt[cj-1] + vctr_pt[cj])
|
||||
# update the coords
|
||||
coords[ri] = vctr_cell
|
||||
|
|
|
@ -168,8 +168,8 @@ for name in filenames:
|
|||
im = Image.new('RGBA',imagesize)
|
||||
draw = ImageDraw.Draw(im)
|
||||
|
||||
for y in xrange(options.dimension[1]):
|
||||
for x in xrange(options.dimension[0]):
|
||||
for y in range(options.dimension[1]):
|
||||
for x in range(options.dimension[0]):
|
||||
draw.polygon([nodes[0,x ,y ,options.z],
|
||||
nodes[1,x ,y ,options.z],
|
||||
nodes[0,x+1,y ,options.z],
|
||||
|
|
|
@ -27,9 +27,9 @@ def outStdout(cmd,locals):
|
|||
exec(cmd[3:])
|
||||
elif cmd[0:3] == '(?)':
|
||||
cmd = eval(cmd[3:])
|
||||
print cmd
|
||||
print(cmd)
|
||||
else:
|
||||
print cmd
|
||||
print(cmd)
|
||||
return
|
||||
|
||||
|
||||
|
@ -121,17 +121,17 @@ if options.inverse:
|
|||
theMap = theMap.invert()
|
||||
|
||||
if options.palettef:
|
||||
print theMap.export(format='raw',steps=options.colorcount)
|
||||
print(theMap.export(format='raw',steps=options.colorcount))
|
||||
elif options.palette:
|
||||
for theColor in theMap.export(format='list',steps=options.colorcount):
|
||||
print '\t'.join(map(lambda x: str(int(255*x)),theColor))
|
||||
print('\t'.join(map(lambda x: str(int(255*x)),theColor)))
|
||||
else: # connect to Mentat and change colorMap
|
||||
sys.path.append(damask.solver.Marc().libraryPath())
|
||||
try:
|
||||
import py_mentat
|
||||
print 'waiting to connect...'
|
||||
print('waiting to connect...')
|
||||
py_mentat.py_connect('',options.port)
|
||||
print 'connected...'
|
||||
print('connected...')
|
||||
mentat = True
|
||||
except:
|
||||
sys.stderr.write('warning: no valid Mentat release found\n')
|
||||
|
|
|
@ -150,7 +150,7 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
self.expectedFileSize = self.dataOffset+self.N_increments*(self.tagLen+self.N_elements*self.N_element_scalars*8)
|
||||
if options.legacy: self.expectedFileSize+=self.expectedFileSize//self.fourByteLimit*8 # add extra 8 bytes for additional headers at 4 GB limits
|
||||
if self.expectedFileSize != self.filesize:
|
||||
print '\n**\n* Unexpected file size. Incomplete simulation or file corrupted!\n**'
|
||||
print('\n**\n* Unexpected file size. Incomplete simulation or file corrupted!\n**')
|
||||
|
||||
def __str__(self):
|
||||
"""Summary of results file"""
|
||||
|
@ -288,8 +288,8 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
self.file.seek(incStart+where)
|
||||
value = struct.unpack('d',self.file.read(8))[0]
|
||||
except:
|
||||
print 'seeking',incStart+where
|
||||
print 'e',e,'idx',idx
|
||||
print('seeking {}'.format(incStart+where))
|
||||
print('e {} idx {}'.format(e,idx))
|
||||
sys.exit(1)
|
||||
|
||||
else:
|
||||
|
@ -304,7 +304,7 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
try:
|
||||
if where%self.fourByteLimit + 8 >= self.fourByteLimit: # danger of reading into fortran record footer at 4 byte limit
|
||||
data=''
|
||||
for i in xrange(8):
|
||||
for i in range(8):
|
||||
self.file.seek(incStart+where+(where//self.fourByteLimit)*8+4)
|
||||
data += self.file.read(1)
|
||||
where += 1
|
||||
|
@ -313,8 +313,8 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
self.file.seek(incStart+where+(where//self.fourByteLimit)*8+4)
|
||||
value = struct.unpack('d',self.file.read(8))[0]
|
||||
except:
|
||||
print 'seeking',incStart+where+(where//self.fourByteLimit)*8+4
|
||||
print 'e',e,'idx',idx
|
||||
print('seeking {}'.format(incStart+where+(where//self.fourByteLimit)*8+4))
|
||||
print('e {} idx {}'.format(e,idx))
|
||||
sys.exit(1)
|
||||
|
||||
return [elemental_scalar(node,value) for node in self.element(e).items]
|
||||
|
@ -327,7 +327,7 @@ class MPIEspectral_result: # mimic py_post result object
|
|||
|
||||
# -----------------------------
|
||||
def ipCoords(elemType, nodalCoordinates):
|
||||
"""returns IP coordinates for a given element"""
|
||||
"""Returns IP coordinates for a given element"""
|
||||
nodeWeightsPerNode = {
|
||||
7: [ [27.0, 9.0, 3.0, 9.0, 9.0, 3.0, 1.0, 3.0],
|
||||
[ 9.0, 27.0, 9.0, 3.0, 3.0, 9.0, 3.0, 1.0],
|
||||
|
@ -376,7 +376,7 @@ def ipCoords(elemType, nodalCoordinates):
|
|||
|
||||
# -----------------------------
|
||||
def ipIDs(elemType):
|
||||
"""returns IP numbers for given element type"""
|
||||
"""Returns IP numbers for given element type"""
|
||||
ipPerNode = {
|
||||
7: [ 1, 2, 4, 3, 5, 6, 8, 7 ],
|
||||
57: [ 1, 2, 4, 3, 5, 6, 8, 7 ],
|
||||
|
@ -392,7 +392,7 @@ def ipIDs(elemType):
|
|||
|
||||
# -----------------------------
|
||||
def substituteLocation(string, mesh, coords):
|
||||
"""do variable interpolation in group and filter strings"""
|
||||
"""Do variable interpolation in group and filter strings"""
|
||||
substitute = string
|
||||
substitute = substitute.replace('elem', str(mesh[0]))
|
||||
substitute = substitute.replace('node', str(mesh[1]))
|
||||
|
@ -407,7 +407,7 @@ def substituteLocation(string, mesh, coords):
|
|||
|
||||
# -----------------------------
|
||||
def heading(glue,parts):
|
||||
"""joins pieces from parts by glue. second to last entry in pieces tells multiplicity"""
|
||||
"""Joins pieces from parts by glue. second to last entry in pieces tells multiplicity"""
|
||||
header = []
|
||||
for pieces in parts:
|
||||
if pieces[-2] == 0:
|
||||
|
@ -420,7 +420,7 @@ def heading(glue,parts):
|
|||
# -----------------------------
|
||||
def mapIncremental(label, mapping, N, base, new):
|
||||
"""
|
||||
applies the function defined by "mapping"
|
||||
Applies the function defined by "mapping"
|
||||
|
||||
(can be either 'min','max','avg', 'sum', or user specified)
|
||||
to a list of data
|
||||
|
@ -450,7 +450,7 @@ def mapIncremental(label, mapping, N, base, new):
|
|||
|
||||
# -----------------------------
|
||||
def OpenPostfile(name,type,nodal = False):
|
||||
"""open postfile with extrapolation mode 'translate'"""
|
||||
"""Open postfile with extrapolation mode 'translate'"""
|
||||
p = {\
|
||||
'spectral': MPIEspectral_result,\
|
||||
'marc': post_open,\
|
||||
|
@ -463,7 +463,7 @@ def OpenPostfile(name,type,nodal = False):
|
|||
|
||||
# -----------------------------
|
||||
def ParseOutputFormat(filename,what,me):
|
||||
"""parse .output* files in order to get a list of outputs"""
|
||||
"""Parse .output* files in order to get a list of outputs"""
|
||||
content = []
|
||||
format = {'outputs':{},'specials':{'brothers':[]}}
|
||||
for prefix in ['']+map(str,range(1,17)):
|
||||
|
@ -508,7 +508,7 @@ def ParseOutputFormat(filename,what,me):
|
|||
# -----------------------------
|
||||
def ParsePostfile(p,filename, outputFormat):
|
||||
"""
|
||||
parse postfile in order to get position and labels of outputs
|
||||
Parse postfile in order to get position and labels of outputs
|
||||
|
||||
needs "outputFormat" for mapping of output names to postfile output indices
|
||||
"""
|
||||
|
@ -592,7 +592,7 @@ def ParsePostfile(p,filename, outputFormat):
|
|||
try:
|
||||
stat['LabelOfElementalScalar'][startIndex + offset] = label
|
||||
except IndexError:
|
||||
print 'trying to assign %s at position %i+%i'%(label,startIndex,offset)
|
||||
print('trying to assign {} at position {}+{}'.format(label,startIndex,offset))
|
||||
sys.exit(1)
|
||||
offset += 1
|
||||
|
||||
|
@ -821,8 +821,8 @@ bg.set_message('parsing .output files...')
|
|||
for what in me:
|
||||
outputFormat[what] = ParseOutputFormat(filename, what, me[what])
|
||||
if '_id' not in outputFormat[what]['specials']:
|
||||
print "\nsection '%s' not found in <%s>"%(me[what], what)
|
||||
print '\n'.join(map(lambda x:' [%s]'%x, outputFormat[what]['specials']['brothers']))
|
||||
print("\nsection '{}' not found in <{}>".format(me[what], what))
|
||||
print('\n'.join(map(lambda x:' [%s]'%x, outputFormat[what]['specials']['brothers'])))
|
||||
|
||||
bg.set_message('opening result file...')
|
||||
p = OpenPostfile(filename+extension,options.filetype,options.nodal)
|
||||
|
@ -851,17 +851,17 @@ for opt in ['nodalScalar','elemScalar','elemTensor','homogenizationResult','crys
|
|||
|
||||
if options.info:
|
||||
if options.filetype == 'marc':
|
||||
print '\n\nMentat release %s'%damask.solver.Marc().version('../../')
|
||||
print('\n\nMentat release {}'.format(damask.solver.Marc().version('../../')))
|
||||
if options.filetype == 'spectral':
|
||||
print '\n\n',p
|
||||
print('\n\n{}'.format(p))
|
||||
|
||||
SummarizePostfile(stat)
|
||||
|
||||
print '\nUser Defined Outputs'
|
||||
print('\nUser Defined Outputs')
|
||||
for what in me:
|
||||
print '\n ',what,':'
|
||||
print('\n {}:'.format(what))
|
||||
for output in outputFormat[what]['outputs']:
|
||||
print ' ',output
|
||||
print(' {}'.format(output))
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
|
@ -869,7 +869,7 @@ if options.info:
|
|||
# --- build connectivity maps
|
||||
|
||||
elementsOfNode = {}
|
||||
for e in xrange(stat['NumberOfElements']):
|
||||
for e in range(stat['NumberOfElements']):
|
||||
if e%1000 == 0:
|
||||
bg.set_message('connect elem %i...'%e)
|
||||
for n in map(p.node_sequence,p.element(e).items):
|
||||
|
@ -892,7 +892,7 @@ groupCount = 0
|
|||
memberCount = 0
|
||||
|
||||
if options.nodalScalar:
|
||||
for n in xrange(stat['NumberOfNodes']):
|
||||
for n in range(stat['NumberOfNodes']):
|
||||
if n%1000 == 0:
|
||||
bg.set_message('scan node %i...'%n)
|
||||
myNodeID = p.node_id(n)
|
||||
|
@ -927,7 +927,7 @@ if options.nodalScalar:
|
|||
memberCount += 1
|
||||
|
||||
else:
|
||||
for e in xrange(stat['NumberOfElements']):
|
||||
for e in range(stat['NumberOfElements']):
|
||||
if e%1000 == 0:
|
||||
bg.set_message('scan elem %i...'%e)
|
||||
myElemID = p.element_id(e)
|
||||
|
@ -947,27 +947,27 @@ else:
|
|||
# --- filter valid locations
|
||||
# generates an expression that is only true for the locations specified by options.filter
|
||||
filter = substituteLocation(options.filter, [myElemID,myNodeID,myIpID,myGrainID], myIpCoordinates[n])
|
||||
if filter != '' and not eval(filter): # for all filter expressions that are not true:...
|
||||
continue # ... ignore this data point and continue with next
|
||||
if filter != '' and not eval(filter): # for all filter expressions that are not true:...
|
||||
continue # ... ignore this data point and continue with next
|
||||
|
||||
# --- group data locations
|
||||
# generates a unique key for a group of separated data based on the separation criterium for the location
|
||||
grp = substituteLocation('#'.join(options.sep), [myElemID,myNodeID,myIpID,myGrainID], myIpCoordinates[n])
|
||||
|
||||
if grp not in index: # create a new group if not yet present
|
||||
if grp not in index: # create a new group if not yet present
|
||||
index[grp] = groupCount
|
||||
groups.append([[0,0,0,0,0.0,0.0,0.0]]) # initialize with avg location
|
||||
groups.append([[0,0,0,0,0.0,0.0,0.0]]) # initialize with avg location
|
||||
groupCount += 1
|
||||
|
||||
groups[index[grp]][0][:4] = mapIncremental('','unique',
|
||||
len(groups[index[grp]])-1,
|
||||
groups[index[grp]][0][:4],
|
||||
[myElemID,myNodeID,myIpID,myGrainID]) # keep only if unique average location
|
||||
[myElemID,myNodeID,myIpID,myGrainID]) # keep only if unique average location
|
||||
groups[index[grp]][0][4:] = mapIncremental('','avg',
|
||||
len(groups[index[grp]])-1,
|
||||
groups[index[grp]][0][4:],
|
||||
myIpCoordinates[n]) # incrementally update average location
|
||||
groups[index[grp]].append([myElemID,myNodeID,myIpID,myGrainID,n]) # append a new list defining each group member
|
||||
myIpCoordinates[n]) # incrementally update average location
|
||||
groups[index[grp]].append([myElemID,myNodeID,myIpID,myGrainID,n]) # append a new list defining each group member
|
||||
memberCount += 1
|
||||
|
||||
|
||||
|
@ -996,14 +996,14 @@ if 'none' not in map(str.lower, options.sort):
|
|||
|
||||
sortKeys = eval('lambda x:(%s)'%(','.join(theKeys)))
|
||||
bg.set_message('sorting groups...')
|
||||
groups.sort(key = sortKeys) # in-place sorting to save mem
|
||||
groups.sort(key = sortKeys) # in-place sorting to save mem
|
||||
|
||||
|
||||
# --------------------------- create output dir --------------------------------
|
||||
|
||||
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
|
||||
if not os.path.isdir(dirname):
|
||||
os.mkdir(dirname,0755)
|
||||
os.mkdir(dirname,0o755)
|
||||
|
||||
fileOpen = False
|
||||
assembleHeader = True
|
||||
|
@ -1049,7 +1049,7 @@ for incCount,position in enumerate(locations): # walk through locations
|
|||
|
||||
if options.separateFiles:
|
||||
if fileOpen:
|
||||
file.close()
|
||||
file.close() # noqa
|
||||
fileOpen = False
|
||||
outFilename = eval('"'+eval("'%%s_inc%%0%ii%%s.txt'%(math.log10(max(increments+[1]))+1)")\
|
||||
+'"%(dirname + os.sep + options.prefix + os.path.split(filename)[1],increments[incCount],options.suffix)')
|
||||
|
@ -1070,15 +1070,15 @@ for incCount,position in enumerate(locations): # walk through locations
|
|||
member = 0
|
||||
for group in groups:
|
||||
|
||||
N = 0 # group member counter
|
||||
for (e,n,i,g,n_local) in group[1:]: # loop over group members
|
||||
N = 0 # group member counter
|
||||
for (e,n,i,g,n_local) in group[1:]: # loop over group members
|
||||
member += 1
|
||||
if member%1000 == 0:
|
||||
time_delta = ((len(locations)*memberCount)/float(member+incCount*memberCount)-1.0)*(time.time()-time_start)
|
||||
bg.set_message('(%02i:%02i:%02i) processing point %i of %i from increment %i (position %i)...'
|
||||
%(time_delta//3600,time_delta%3600//60,time_delta%60,member,memberCount,increments[incCount],position))
|
||||
|
||||
newby = [] # current member's data
|
||||
newby = [] # current member's data
|
||||
|
||||
if options.nodalScalar:
|
||||
for label in options.nodalScalar:
|
||||
|
@ -1126,7 +1126,7 @@ for incCount,position in enumerate(locations): # walk through locations
|
|||
['Crystallite']*len(options.crystalliteResult) +
|
||||
['Constitutive']*len(options.constitutiveResult)
|
||||
):
|
||||
outputIndex = list(zip(*outputFormat[resultType]['outputs'])[0]).index(label) # find the position of this output in the outputFormat
|
||||
outputIndex = list(zip(*outputFormat[resultType]['outputs'])[0]).index(label) # find the position of this output in the outputFormat
|
||||
length = int(outputFormat[resultType]['outputs'][outputIndex][1])
|
||||
thisHead = heading('_',[[component,''.join( label.split() )] for component in range(int(length>1),length+int(length>1))])
|
||||
if assembleHeader: header += thisHead
|
||||
|
@ -1138,13 +1138,13 @@ for incCount,position in enumerate(locations): # walk through locations
|
|||
'content':[ p.element_scalar(p.element_sequence(e),stat['IndexOfLabel'][head])[n_local].value
|
||||
for head in thisHead ]})
|
||||
except KeyError:
|
||||
print '\nDAMASK outputs seem missing from "post" section of the *.dat file!'
|
||||
print('\nDAMASK outputs seem missing from "post" section of the *.dat file!')
|
||||
sys.exit()
|
||||
|
||||
assembleHeader = False
|
||||
|
||||
if N == 0:
|
||||
mappedResult = [float(x) for x in xrange(len(header))] # initialize with debug data (should get deleted by *N at N=0)
|
||||
mappedResult = [float(x) for x in range(len(header))] # init with debug data (should get deleted by *N at N=0)
|
||||
|
||||
pos = 0
|
||||
for chunk in newby:
|
||||
|
|
|
@ -67,7 +67,7 @@ for name in filenames:
|
|||
if index == -1: remarks.append('label "{}" not present...'.format(options.label[i]))
|
||||
else:
|
||||
m = pattern[dimensions[i]>1].match(table.tags[index]) # isolate label name
|
||||
for j in xrange(dimensions[i]):
|
||||
for j in range(dimensions[i]):
|
||||
table.tags[index+j] = table.tags[index+j].replace(m.group(2),options.substitute[i]) # replace name with substitute
|
||||
|
||||
if remarks != []: damask.util.croak(remarks)
|
||||
|
|
|
@ -12,7 +12,7 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
|
||||
# -----------------------------
|
||||
def getHeader(filename,sizeFastIndex,sizeSlowIndex,stepsize):
|
||||
"""returns header for ang file step size in micrometer"""
|
||||
"""Returns header for ang file step size in micrometer"""
|
||||
return '\n'.join([ \
|
||||
'# TEM_PIXperUM 1.000000', \
|
||||
'# x-star 1.000000', \
|
||||
|
@ -48,7 +48,7 @@ def getHeader(filename,sizeFastIndex,sizeSlowIndex,stepsize):
|
|||
|
||||
# -----------------------------
|
||||
def positiveRadians(angle):
|
||||
"""returns positive angle in radians from angle in degrees"""
|
||||
"""Returns positive angle in radians from angle in degrees"""
|
||||
angle = math.radians(float(angle))
|
||||
while angle < 0.0:
|
||||
angle += 2.0 * math.pi
|
||||
|
@ -59,7 +59,7 @@ def positiveRadians(angle):
|
|||
# -----------------------------
|
||||
def getDataLine(angles,x,y,validData=True):
|
||||
"""
|
||||
returns string of one line in ang file
|
||||
Returns string of one line in ang file
|
||||
|
||||
convention in ang file: y coordinate comes first and is fastest index
|
||||
positions in micrometer
|
||||
|
@ -295,13 +295,13 @@ for filename in filenames:
|
|||
|
||||
if options.verbose: sys.stdout.write("\nGENERATING POINTS FOR POINT GRID")
|
||||
points = vtk.vtkPoints()
|
||||
for k in xrange(Npoints[2]):
|
||||
for j in xrange(Npoints[0]):
|
||||
for i in xrange(Npoints[1]): # y is fastest index
|
||||
for k in range(Npoints[2]):
|
||||
for j in range(Npoints[0]):
|
||||
for i in range(Npoints[1]): # y is fastest index
|
||||
rotatedpoint = np.array([rotatedbox[0][0] + (float(j) + 0.5) * options.resolution,
|
||||
rotatedbox[1][0] + (float(i) + 0.5) * options.resolution,
|
||||
rotatedbox[2][0] + (float(k) + 0.5) * options.distance ]) # point in rotated system
|
||||
point = np.dot(R.T,rotatedpoint) # point in mesh system
|
||||
rotatedbox[2][0] + (float(k) + 0.5) * options.distance ]) # point in rotated system
|
||||
point = np.dot(R.T,rotatedpoint) # point in mesh system
|
||||
points.InsertNextPoint(list(point))
|
||||
if options.verbose:
|
||||
sys.stdout.write("\rGENERATING POINTS FOR POINT GRID %d%%" %(100*(Npoints[1]*(k*Npoints[0]+j)+i+1)/totalNpoints))
|
||||
|
@ -315,7 +315,7 @@ for filename in filenames:
|
|||
|
||||
if options.verbose: sys.stdout.write("\nGENERATING VERTICES FOR POINT GRID")
|
||||
vertices = vtk.vtkCellArray()
|
||||
for i in xrange(totalNpoints):
|
||||
for i in range(totalNpoints):
|
||||
vertex = vtk.vtkVertex()
|
||||
vertex.GetPointIds().SetId(0,i) # each vertex consists of exactly one (index 0) point with ID "i"
|
||||
vertices.InsertNextCell(vertex)
|
||||
|
@ -378,7 +378,7 @@ for filename in filenames:
|
|||
with open(angfilename,'w') as angfile:
|
||||
if options.verbose: sys.stdout.write(" %s\n"%angfilename)
|
||||
angfile.write(getHeader(filename,Npoints[1],Npoints[0],options.resolution*options.scale))
|
||||
for i in xrange(sliceN*NpointsPerSlice,(sliceN+1)*NpointsPerSlice): # Iterate over points on slice
|
||||
for i in range(sliceN*NpointsPerSlice,(sliceN+1)*NpointsPerSlice): # Iterate over points on slice
|
||||
|
||||
|
||||
# Get euler angles of closest IDs
|
||||
|
|
|
@ -76,12 +76,12 @@ for name in filenames:
|
|||
np.zeros((table.data.shape[0],
|
||||
3-table.data.shape[1]),dtype='f'))) # fill coords up to 3D with zeros
|
||||
|
||||
coords = [np.unique(table.data[:,i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,i]) for i in range(3)]
|
||||
|
||||
if options.mode == 'cell':
|
||||
coords = [0.5 * np.array([3.0 * coords[i][0] - coords[i][0 + int(len(coords[i]) > 1)]] + \
|
||||
[coords[i][j-1] + coords[i][j] for j in xrange(1,len(coords[i]))] + \
|
||||
[3.0 * coords[i][-1] - coords[i][-1 - int(len(coords[i]) > 1)]]) for i in xrange(3)]
|
||||
[coords[i][j-1] + coords[i][j] for j in range(1,len(coords[i]))] + \
|
||||
[3.0 * coords[i][-1] - coords[i][-1 - int(len(coords[i]) > 1)]]) for i in range(3)]
|
||||
|
||||
grid = np.array(map(len,coords),'i')
|
||||
N = grid.prod() if options.mode == 'point' else (grid-1).prod()
|
||||
|
|
|
@ -14,13 +14,13 @@ def ParseOutputFormat(filename,what,me):
|
|||
|
||||
outputmetafile = filename+'.output'+what
|
||||
try:
|
||||
file = open(outputmetafile)
|
||||
myFile = open(outputmetafile)
|
||||
except:
|
||||
print('Could not open file %s'%outputmetafile)
|
||||
raise
|
||||
else:
|
||||
content = file.readlines()
|
||||
file.close()
|
||||
content = myFile.readlines()
|
||||
myFile.close()
|
||||
|
||||
tag = ''
|
||||
tagID = 0
|
||||
|
@ -60,7 +60,7 @@ that are written during the first run of the model.
|
|||
Specify which user block format you want to apply by stating the homogenization, crystallite, and phase identifiers.
|
||||
Or have an existing set of user variables copied over from another *.inp file.
|
||||
|
||||
""", version= scriptID)
|
||||
""", version = scriptID)
|
||||
|
||||
parser.add_option('-m', dest='number', type='int', metavar = 'int',
|
||||
help='maximum requested User Defined Variable [%default]')
|
||||
|
@ -92,15 +92,15 @@ me = { 'Homogenization': options.homog,
|
|||
}
|
||||
|
||||
|
||||
for file in files:
|
||||
print '\033[1m'+scriptName+'\033[0m: '+file+'\n'
|
||||
for myFile in files:
|
||||
print('\033[1m'+scriptName+'\033[0m: '+myFile+'\n')
|
||||
if options.useFile:
|
||||
formatFile = os.path.splitext(options.useFile)[0]
|
||||
else:
|
||||
formatFile = os.path.splitext(file)[0]
|
||||
file = os.path.splitext(file)[0]+'.inp'
|
||||
if not os.path.lexists(file):
|
||||
print file,'not found'
|
||||
formatFile = os.path.splitext(myFile)[0]
|
||||
myFile = os.path.splitext(myFile)[0]+'.inp'
|
||||
if not os.path.lexists(myFile):
|
||||
print('{} not found'.format(myFile))
|
||||
continue
|
||||
|
||||
print('Scanning format files of: %s'%formatFile)
|
||||
|
@ -111,8 +111,8 @@ for file in files:
|
|||
for what in me:
|
||||
outputFormat[what] = ParseOutputFormat(formatFile,what,me[what])
|
||||
if '_id' not in outputFormat[what]['specials']:
|
||||
print "'%s' not found in <%s>"%(me[what],what)
|
||||
print '\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers']))
|
||||
print("'{}' not found in <{}>".format(me[what],what))
|
||||
print('\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers'])))
|
||||
sys.exit(1)
|
||||
|
||||
UserVars = ['HomogenizationCount']
|
||||
|
@ -140,11 +140,11 @@ for file in files:
|
|||
UserVars += ['%i_%s'%(grain+1,var[0]) for i in range(var[1])]
|
||||
|
||||
# Now change *.inp file(s)
|
||||
print('Adding labels to: %s'%file)
|
||||
inFile = open(file)
|
||||
print('Adding labels to: %s'%myFile)
|
||||
inFile = open(myFile)
|
||||
input = inFile.readlines()
|
||||
inFile.close()
|
||||
output = open(file,'w')
|
||||
output = open(myFile,'w')
|
||||
thisSection = ''
|
||||
if options.damaskOption:
|
||||
output.write('$damask {0}\n'.format(options.damaskOption))
|
||||
|
@ -165,3 +165,4 @@ for file in files:
|
|||
if (thisSection.upper() != '*DEPVAR' or not re.match('\s*\d',line)):
|
||||
output.write(line)
|
||||
output.close()
|
||||
|
||||
|
|
|
@ -93,12 +93,12 @@ for name in filenames:
|
|||
|
||||
microstructure_cropped = np.zeros(newInfo['grid'],datatype)
|
||||
microstructure_cropped.fill(options.fill if options.real or options.fill > 0 else microstructure.max()+1)
|
||||
xindex = list(set(xrange(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \
|
||||
set(xrange(info['grid'][0])))
|
||||
yindex = list(set(xrange(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \
|
||||
set(xrange(info['grid'][1])))
|
||||
zindex = list(set(xrange(options.offset[2],options.offset[2]+newInfo['grid'][2])) & \
|
||||
set(xrange(info['grid'][2])))
|
||||
xindex = list(set(range(options.offset[0],options.offset[0]+newInfo['grid'][0])) & \
|
||||
set(range(info['grid'][0])))
|
||||
yindex = list(set(range(options.offset[1],options.offset[1]+newInfo['grid'][1])) & \
|
||||
set(range(info['grid'][1])))
|
||||
zindex = list(set(range(options.offset[2],options.offset[2]+newInfo['grid'][2])) & \
|
||||
set(range(info['grid'][2])))
|
||||
translate_x = [i - options.offset[0] for i in xindex]
|
||||
translate_y = [i - options.offset[1] for i in yindex]
|
||||
translate_z = [i - options.offset[2] for i in zindex]
|
||||
|
|
|
@ -125,10 +125,10 @@ for name in filenames:
|
|||
Y = options.periods*2.0*math.pi*(np.arange(options.grid[1])+0.5)/options.grid[1]
|
||||
Z = options.periods*2.0*math.pi*(np.arange(options.grid[2])+0.5)/options.grid[2]
|
||||
|
||||
for z in xrange(options.grid[2]):
|
||||
for y in xrange(options.grid[1]):
|
||||
for z in range(options.grid[2]):
|
||||
for y in range(options.grid[1]):
|
||||
table.data_clear()
|
||||
for x in xrange(options.grid[0]):
|
||||
for x in range(options.grid[0]):
|
||||
table.data_append(options.microstructure[options.threshold < surface[options.type](X[x],Y[y],Z[z])])
|
||||
table.data_write()
|
||||
|
||||
|
|
|
@ -105,8 +105,8 @@ microstructure = np.where(radius < float(options.canal),1,0) + np.where(radius >
|
|||
|
||||
alphaOfGrain = np.zeros(info['grid'][0]*info['grid'][1],'d')
|
||||
betaOfGrain = np.zeros(info['grid'][0]*info['grid'][1],'d')
|
||||
for y in xrange(info['grid'][1]):
|
||||
for x in xrange(info['grid'][0]):
|
||||
for y in range(info['grid'][1]):
|
||||
for x in range(info['grid'][0]):
|
||||
if microstructure[y,x] == 0:
|
||||
microstructure[y,x] = info['microstructures']
|
||||
alphaOfGrain[info['microstructures']] = alpha[y,x]
|
||||
|
@ -129,7 +129,7 @@ header.append('(constituent)\tphase 1\ttexture 1\tfraction 1.0')
|
|||
header.append('[interstitial]')
|
||||
header.append('crystallite %i'%options.crystallite)
|
||||
header.append('(constituent)\tphase 2\ttexture 2\tfraction 1.0')
|
||||
for i in xrange(3,info['microstructures']):
|
||||
for i in range(3,info['microstructures']):
|
||||
header.append('[Grain%s]'%(str(i).zfill(formatwidth)))
|
||||
header.append('crystallite %i'%options.crystallite)
|
||||
header.append('(constituent)\tphase 3\ttexture %s\tfraction 1.0'%(str(i).rjust(formatwidth)))
|
||||
|
@ -137,7 +137,7 @@ for i in xrange(3,info['microstructures']):
|
|||
header.append('<texture>')
|
||||
header.append('[canal]')
|
||||
header.append('[interstitial]')
|
||||
for i in xrange(3,info['microstructures']):
|
||||
for i in range(3,info['microstructures']):
|
||||
header.append('[Grain%s]'%(str(i).zfill(formatwidth)))
|
||||
header.append('(gauss)\tphi1 %g\tPhi %g\tphi2 0\tscatter 0.0\tfraction 1.0'\
|
||||
%(alphaOfGrain[i],betaOfGrain[i]))
|
||||
|
|
|
@ -163,7 +163,7 @@ for name in filenames:
|
|||
|
||||
# --------------- figure out size and grid ---------------------------------------------------------
|
||||
|
||||
coords = [np.unique(table.data[:,i]) for i in xrange(3)]
|
||||
coords = [np.unique(table.data[:,i]) for i in range(3)]
|
||||
mincorner = np.array(map(min,coords))
|
||||
maxcorner = np.array(map(max,coords))
|
||||
grid = np.array(map(len,coords),'i')
|
||||
|
@ -217,9 +217,9 @@ for name in filenames:
|
|||
tick = time.clock()
|
||||
if options.verbose: bg.set_message('assigning grain IDs...')
|
||||
|
||||
for z in xrange(grid[2]):
|
||||
for y in xrange(grid[1]):
|
||||
for x in xrange(grid[0]):
|
||||
for z in range(grid[2]):
|
||||
for y in range(grid[1]):
|
||||
for x in range(grid[0]):
|
||||
if (myPos+1)%(N/500.) < 1:
|
||||
time_delta = (time.clock()-tick) * (N - myPos) / myPos
|
||||
if options.verbose: bg.set_message('(%02i:%02i:%02i) processing point %i of %i (grain count %i)...'
|
||||
|
|
|
@ -13,7 +13,7 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
|
||||
|
||||
def meshgrid2(*arrs):
|
||||
"""code inspired by http://stackoverflow.com/questions/1827489/numpy-meshgrid-in-3d"""
|
||||
"""Code inspired by http://stackoverflow.com/questions/1827489/numpy-meshgrid-in-3d"""
|
||||
arrs = tuple(reversed(arrs))
|
||||
arrs = tuple(arrs)
|
||||
lens = np.array(map(len, arrs))
|
||||
|
@ -240,7 +240,7 @@ for name in filenames:
|
|||
if np.any(info['size'] <= 0.0) \
|
||||
and np.all(info['grid'] < 1): errors.append('invalid size x y z.')
|
||||
else:
|
||||
for i in xrange(3):
|
||||
for i in range(3):
|
||||
if info['size'][i] <= 0.0: # any invalid size?
|
||||
info['size'][i] = float(info['grid'][i])/max(info['grid']) # normalize to grid
|
||||
remarks.append('rescaling size {} to {}...'.format({0:'x',1:'y',2:'z'}[i],info['size'][i]))
|
||||
|
|
|
@ -95,7 +95,7 @@ for name in filenames:
|
|||
struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood
|
||||
|
||||
|
||||
for smoothIter in xrange(options.N):
|
||||
for smoothIter in range(options.N):
|
||||
periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2,
|
||||
grid[1]/2:-grid[1]/2,
|
||||
grid[2]/2:-grid[2]/2] # periodically extend the microstructure
|
||||
|
|
|
@ -76,7 +76,7 @@ for name in filenames:
|
|||
items = table.data
|
||||
if len(items) > 2:
|
||||
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
|
||||
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
|
||||
elif items[1].lower() == 'to': items = range(int(items[0]),1+int(items[2]))
|
||||
else: items = map(int,items)
|
||||
else: items = map(int,items)
|
||||
|
||||
|
|
|
@ -92,10 +92,10 @@ for name in filenames:
|
|||
newInfo['size'] = np.where(newInfo['size'] <= 0.0, info['size'],newInfo['size'])
|
||||
|
||||
multiplicity = []
|
||||
for j in xrange(3):
|
||||
for j in range(3):
|
||||
multiplicity.append([])
|
||||
last = 0
|
||||
for i in xrange(info['grid'][j]):
|
||||
for i in range(info['grid'][j]):
|
||||
this = int((i+1)*float(newInfo['grid'][j])/info['grid'][j])
|
||||
multiplicity[j].append(this-last)
|
||||
last = this
|
||||
|
|
|
@ -63,7 +63,7 @@ for name in filenames:
|
|||
table.info_clear()
|
||||
table.info_append(extra_header + [scriptID + '\t' + ' '.join(sys.argv[1:])])
|
||||
table.labels_clear()
|
||||
table.labels_append(['{}_{}'.format(1+i,'pos') for i in xrange(3)]+['microstructure'])
|
||||
table.labels_append(['{}_{}'.format(1+i,'pos') for i in range(3)]+['microstructure'])
|
||||
table.head_write()
|
||||
table.output_flush()
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ parser.set_defaults(origin = (0.0,0.0,0.0),
|
|||
datatype = 'f' if options.real else 'i'
|
||||
|
||||
sub = {}
|
||||
for i in xrange(len(options.substitute)/2): # split substitution list into "from" -> "to"
|
||||
for i in range(len(options.substitute)/2): # split substitution list into "from" -> "to"
|
||||
sub[int(options.substitute[i*2])] = int(options.substitute[i*2+1])
|
||||
|
||||
# --- loop over input files ----------------------------------------------------------------------
|
||||
|
@ -82,7 +82,7 @@ for name in filenames:
|
|||
|
||||
# --- read data ----------------------------------------------------------------------------------
|
||||
|
||||
microstructure = table.microstructure_read(info['grid'],datatype) # read microstructure
|
||||
microstructure = table.microstructure_read(info['grid'],datatype) # read microstructure
|
||||
|
||||
# --- do work ------------------------------------------------------------------------------------
|
||||
|
||||
|
|
|
@ -19,7 +19,7 @@ def integerFactorization(i):
|
|||
return j
|
||||
|
||||
def binAsBins(bin,intervals):
|
||||
"""explode compound bin into 3D bins list"""
|
||||
"""Explode compound bin into 3D bins list"""
|
||||
bins = [0]*3
|
||||
bins[0] = (bin//(intervals[1] * intervals[2])) % intervals[0]
|
||||
bins[1] = (bin//intervals[2]) % intervals[1]
|
||||
|
@ -27,17 +27,17 @@ def binAsBins(bin,intervals):
|
|||
return bins
|
||||
|
||||
def binsAsBin(bins,intervals):
|
||||
"""implode 3D bins into compound bin"""
|
||||
"""Implode 3D bins into compound bin"""
|
||||
return (bins[0]*intervals[1] + bins[1])*intervals[2] + bins[2]
|
||||
|
||||
def EulersAsBins(Eulers,intervals,deltas,center):
|
||||
"""return list of Eulers translated into 3D bins list"""
|
||||
"""Return list of Eulers translated into 3D bins list"""
|
||||
return [int((euler+(0.5-center)*delta)//delta)%interval \
|
||||
for euler,delta,interval in zip(Eulers,deltas,intervals) \
|
||||
]
|
||||
|
||||
def binAsEulers(bin,intervals,deltas,center):
|
||||
"""compound bin number translated into list of Eulers"""
|
||||
"""Compound bin number translated into list of Eulers"""
|
||||
Eulers = [0.0]*3
|
||||
Eulers[2] = (bin%intervals[2] + center)*deltas[2]
|
||||
Eulers[1] = (bin//intervals[2]%intervals[1] + center)*deltas[1]
|
||||
|
@ -45,7 +45,7 @@ def binAsEulers(bin,intervals,deltas,center):
|
|||
return Eulers
|
||||
|
||||
def directInvRepetitions(probability,scale):
|
||||
"""calculate number of samples drawn by direct inversion"""
|
||||
"""Calculate number of samples drawn by direct inversion"""
|
||||
nDirectInv = 0
|
||||
for bin in range(len(probability)): # loop over bins
|
||||
nDirectInv += int(round(probability[bin]*scale)) # calc repetition
|
||||
|
@ -270,7 +270,7 @@ for name in filenames:
|
|||
ODF['limit'] = np.radians(limits[1,:]) # right hand limits in radians
|
||||
ODF['center'] = 0.0 if all(limits[0,:]<1e-8) else 0.5 # vertex or cell centered
|
||||
|
||||
ODF['interval'] = np.array(map(len,[np.unique(table.data[:,i]) for i in xrange(3)]),'i') # steps are number of distict values
|
||||
ODF['interval'] = np.array(map(len,[np.unique(table.data[:,i]) for i in range(3)]),'i') # steps are number of distict values
|
||||
ODF['nBins'] = ODF['interval'].prod()
|
||||
ODF['delta'] = np.radians(np.array(limits[1,0:3]-limits[0,0:3])/(ODF['interval']-1)) # step size
|
||||
|
||||
|
@ -349,7 +349,7 @@ for name in filenames:
|
|||
'#-------------------#',
|
||||
]
|
||||
|
||||
for i,ID in enumerate(xrange(nSamples)):
|
||||
for i,ID in enumerate(range(nSamples)):
|
||||
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
|
||||
'crystallite %i'%options.crystallite,
|
||||
'(constituent) phase %i texture %s fraction 1.0'%(options.phase,str(ID+1).rjust(formatwidth)),
|
||||
|
@ -361,7 +361,7 @@ for name in filenames:
|
|||
'#-------------------#',
|
||||
]
|
||||
|
||||
for ID in xrange(nSamples):
|
||||
for ID in range(nSamples):
|
||||
eulers = Orientations[ID]
|
||||
|
||||
materialConfig += ['[Grain%s]'%(str(ID+1).zfill(formatwidth)),
|
||||
|
|
|
@ -1,13 +1,6 @@
|
|||
#!/usr/bin/env python2.7
|
||||
# -*- coding: UTF-8 no BOM -*-
|
||||
|
||||
"""
|
||||
Writes meaningful labels to the marc input file (*.dat)
|
||||
|
||||
output is based on the files
|
||||
<modelname_jobname>.output<Homogenization/Crystallite/Constitutive>
|
||||
that are written during the first run of the model.
|
||||
"""
|
||||
import sys,os,re
|
||||
from optparse import OptionParser
|
||||
import damask
|
||||
|
@ -21,13 +14,13 @@ def ParseOutputFormat(filename,what,me):
|
|||
|
||||
outputmetafile = filename+'.output'+what
|
||||
try:
|
||||
file = open(outputmetafile)
|
||||
myFile = open(outputmetafile)
|
||||
except:
|
||||
print('Could not open file %s'%outputmetafile)
|
||||
raise
|
||||
else:
|
||||
content = file.readlines()
|
||||
file.close()
|
||||
content = myFile.readlines()
|
||||
myFile.close()
|
||||
|
||||
tag = ''
|
||||
tagID = 0
|
||||
|
@ -109,15 +102,15 @@ me = { 'Homogenization': options.homog,
|
|||
}
|
||||
|
||||
|
||||
for file in files:
|
||||
print '\033[1m'+scriptName+'\033[0m: '+file+'\n'
|
||||
for myFile in files:
|
||||
print('\033[1m'+scriptName+'\033[0m: '+myFile+'\n')
|
||||
if options.useFile != '':
|
||||
formatFile = os.path.splitext(options.useFile)[0]
|
||||
else:
|
||||
formatFile = os.path.splitext(file)[0]
|
||||
file = os.path.splitext(file)[0]+'.dat'
|
||||
if not os.path.lexists(file):
|
||||
print file,'not found'
|
||||
formatFile = os.path.splitext(myFile)[0]
|
||||
myFile = os.path.splitext(myFile)[0]+'.dat'
|
||||
if not os.path.lexists(myFile):
|
||||
print('{} not found'.format(myFile))
|
||||
continue
|
||||
|
||||
print('Scanning format files of: %s'%formatFile)
|
||||
|
@ -128,8 +121,8 @@ for file in files:
|
|||
for what in me:
|
||||
outputFormat[what] = ParseOutputFormat(formatFile,what,me[what])
|
||||
if '_id' not in outputFormat[what]['specials']:
|
||||
print "'%s' not found in <%s>"%(me[what],what)
|
||||
print '\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers']))
|
||||
print("'{}' not found in <{}>"%(me[what],what))
|
||||
print('\n'.join(map(lambda x:' '+x,outputFormat[what]['specials']['brothers'])))
|
||||
sys.exit(1)
|
||||
|
||||
UserVars = ['HomogenizationCount']
|
||||
|
@ -157,11 +150,11 @@ for file in files:
|
|||
UserVars += ['%i_%s'%(grain+1,var[0]) for i in range(var[1])]
|
||||
|
||||
# Now change *.dat file(s)
|
||||
print('Adding labels to: %s'%file)
|
||||
inFile = open(file)
|
||||
print('Adding labels to: %s'%myFile)
|
||||
inFile = open(myFile)
|
||||
input = inFile.readlines()
|
||||
inFile.close()
|
||||
output = open(file,'w')
|
||||
output = open(myFile,'w')
|
||||
thisSection = ''
|
||||
if options.damaskOption:
|
||||
output.write('$damask {0}\n'.format(options.damaskOption))
|
||||
|
|
|
@ -58,14 +58,14 @@ def servoLink():
|
|||
}
|
||||
Nnodes = py_mentat.py_get_int("nnodes()")
|
||||
NodeCoords = np.zeros((Nnodes,3),dtype='d')
|
||||
for node in xrange(Nnodes):
|
||||
for node in range(Nnodes):
|
||||
NodeCoords[node,0] = py_mentat.py_get_float("node_x(%i)"%(node+1))
|
||||
NodeCoords[node,1] = py_mentat.py_get_float("node_y(%i)"%(node+1))
|
||||
NodeCoords[node,2] = py_mentat.py_get_float("node_z(%i)"%(node+1))
|
||||
box['min'] = NodeCoords.min(axis=0) # find the bounding box
|
||||
box['min'] = NodeCoords.min(axis=0) # find the bounding box
|
||||
box['max'] = NodeCoords.max(axis=0)
|
||||
box['delta'] = box['max']-box['min']
|
||||
for coord in xrange(3): # calc the dimension of the bounding box
|
||||
for coord in range(3): # calc the dimension of the bounding box
|
||||
if box['delta'][coord] != 0.0:
|
||||
for extremum in ['min','max']:
|
||||
rounded = round(box[extremum][coord]*1e+15/box['delta'][coord]) * \
|
||||
|
@ -76,12 +76,12 @@ def servoLink():
|
|||
|
||||
#-------------------------------------------------------------------------------------------------
|
||||
# loop over all nodes
|
||||
for node in xrange(Nnodes):
|
||||
for node in range(Nnodes):
|
||||
key = {}
|
||||
maxFlag = [False, False, False]
|
||||
Nmax = 0
|
||||
Nmin = 0
|
||||
for coord in xrange(3): # for each direction
|
||||
for coord in range(3): # for each direction
|
||||
if box['delta'][coord] != 0.0:
|
||||
rounded = round(NodeCoords[node,coord]*1e+15/box['delta'][coord]) * \
|
||||
1e-15*box['delta'][coord] # rounding to 1e-15 of dimension
|
||||
|
@ -102,18 +102,18 @@ def servoLink():
|
|||
if key['z'] not in baseNode[key['x']][key['y']].keys():
|
||||
baseNode[key['x']][key['y']][key['z']] = 0
|
||||
|
||||
baseNode[key['x']][key['y']][key['z']] = node+1 # remember the base node id
|
||||
baseNode[key['x']][key['y']][key['z']] = node+1 # remember the base node id
|
||||
|
||||
if Nmax > 0 and Nmax >= Nmin: # node is on at least as many front than back faces
|
||||
if any([maxFlag[i] and active[i] for i in xrange(3)]):
|
||||
linkNodes.append({'id': node+1,'coord': NodeCoords[node], 'faceMember': [maxFlag[i] and active[i] for i in xrange(3)]})
|
||||
if Nmax > 0 and Nmax >= Nmin: # node is on at least as many front than back faces
|
||||
if any([maxFlag[i] and active[i] for i in range(3)]):
|
||||
linkNodes.append({'id': node+1,'coord': NodeCoords[node], 'faceMember': [maxFlag[i] and active[i] for i in range(3)]})
|
||||
|
||||
baseCorner = baseNode["%.8e"%box['min'][0]]["%.8e"%box['min'][1]]["%.8e"%box['min'][2]] # detect ultimate base node
|
||||
|
||||
|
||||
for node in linkNodes: # loop over all linked nodes
|
||||
linkCoord = [node['coord']] # start list of control node coords with my coords
|
||||
for dir in xrange(3): # check for each direction
|
||||
for dir in range(3): # check for each direction
|
||||
if node['faceMember'][dir]: # me on this front face
|
||||
linkCoord[0][dir] = box['min'][dir] # project me onto rear face along dir
|
||||
linkCoord.append(np.array(box['min'])) # append base corner
|
||||
|
|
|
@ -42,9 +42,9 @@ def outStdout(cmd,locals):
|
|||
exec(cmd[3:])
|
||||
elif cmd[0:3] == '(?)':
|
||||
cmd = eval(cmd[3:])
|
||||
print cmd
|
||||
print(cmd)
|
||||
else:
|
||||
print cmd
|
||||
print(cmd)
|
||||
return
|
||||
|
||||
|
||||
|
@ -84,7 +84,7 @@ def rcbOrientationParser(content,idcolumn):
|
|||
return grains
|
||||
|
||||
def rcbParser(content,M,size,tolerance,idcolumn,segmentcolumn):
|
||||
"""parser for TSL-OIM reconstructed boundary files"""
|
||||
"""Parser for TSL-OIM reconstructed boundary files"""
|
||||
# find bounding box
|
||||
boxX = [1.*sys.maxint,-1.*sys.maxint]
|
||||
boxY = [1.*sys.maxint,-1.*sys.maxint]
|
||||
|
@ -333,21 +333,21 @@ def rcbParser(content,M,size,tolerance,idcolumn,segmentcolumn):
|
|||
for neighbors in grainNeighbors:
|
||||
rcData['neighbors'].append(neighbors)
|
||||
|
||||
for legs in grains['legs']: # loop over grains
|
||||
rcData['grain'].append(legs) # store list of boundary segments
|
||||
for legs in grains['legs']: # loop over grains
|
||||
rcData['grain'].append(legs) # store list of boundary segments
|
||||
myNeighbors = {}
|
||||
for leg in legs: # test each boundary segment
|
||||
if leg < len(grainNeighbors): # a valid segment index?
|
||||
for side in range(2): # look at both sides of the segment
|
||||
if grainNeighbors[leg][side] in myNeighbors: # count occurrence of grain IDs
|
||||
for leg in legs: # test each boundary segment
|
||||
if leg < len(grainNeighbors): # a valid segment index?
|
||||
for side in range(2): # look at both sides of the segment
|
||||
if grainNeighbors[leg][side] in myNeighbors: # count occurrence of grain IDs
|
||||
myNeighbors[grainNeighbors[leg][side]] += 1
|
||||
else:
|
||||
myNeighbors[grainNeighbors[leg][side]] = 1
|
||||
if myNeighbors: # do I have any neighbors (i.e., non-bounding box segment)
|
||||
candidateGrains = sorted(myNeighbors.iteritems(), key=lambda (k,v): (v,k), reverse=True) # sort grain counting
|
||||
# most frequent one not yet seen?
|
||||
if myNeighbors: # do I have any neighbors (i.e., non-bounding box segment)
|
||||
candidateGrains = sorted(myNeighbors.items(), key=lambda (k,v): (v,k), reverse=True) # sort grain counting
|
||||
# most frequent one not yet seen?
|
||||
rcData['grainMapping'].append(candidateGrains[0 if candidateGrains[0][0] not in rcData['grainMapping'] else 1][0]) # must be me then
|
||||
# special case of bi-crystal situation...
|
||||
# special case of bi-crystal situation...
|
||||
|
||||
damask.util.croak(' found {} grains'.format(len(rcData['grain'])))
|
||||
|
||||
|
@ -729,7 +729,7 @@ def image(name,imgsize,marginX,marginY,rcData):
|
|||
|
||||
# -------------------------
|
||||
def inside(x,y,points):
|
||||
"""tests whether point(x,y) is within polygon described by points"""
|
||||
"""Tests whether point(x,y) is within polygon described by points"""
|
||||
inside = False
|
||||
npoints=len(points)
|
||||
(x1,y1) = points[npoints-1] # start with last point of points
|
||||
|
@ -751,7 +751,7 @@ def inside(x,y,points):
|
|||
|
||||
# -------------------------
|
||||
def fftbuild(rcData,height,xframe,yframe,resolution,extrusion):
|
||||
"""build array of grain numbers"""
|
||||
"""Build array of grain numbers"""
|
||||
maxX = -1.*sys.maxint
|
||||
maxY = -1.*sys.maxint
|
||||
for line in rcData['point']: # find data range
|
||||
|
|
|
@ -4,7 +4,6 @@
|
|||
import threading,time,os,sys,random
|
||||
import numpy as np
|
||||
from optparse import OptionParser
|
||||
from operator import mul
|
||||
from cStringIO import StringIO
|
||||
import damask
|
||||
|
||||
|
@ -65,7 +64,7 @@ class myThread (threading.Thread):
|
|||
NmoveGrains = random.randrange(1,maxSeeds)
|
||||
selectedMs = []
|
||||
direction = []
|
||||
for i in xrange(NmoveGrains):
|
||||
for i in range(NmoveGrains):
|
||||
selectedMs.append(random.randrange(1,nMicrostructures))
|
||||
|
||||
direction.append(np.array(((random.random()-0.5)*delta[0],
|
||||
|
@ -110,7 +109,7 @@ class myThread (threading.Thread):
|
|||
currentData=np.bincount(perturbedGeomTable.data.astype(int).ravel())[1:]/points
|
||||
currentError=[]
|
||||
currentHist=[]
|
||||
for i in xrange(nMicrostructures): # calculate the deviation in all bins per histogram
|
||||
for i in range(nMicrostructures): # calculate the deviation in all bins per histogram
|
||||
currentHist.append(np.histogram(currentData,bins=target[i]['bins'])[0])
|
||||
currentError.append(np.sqrt(np.square(np.array(target[i]['histogram']-currentHist[i])).sum()))
|
||||
|
||||
|
@ -122,12 +121,12 @@ class myThread (threading.Thread):
|
|||
bestMatch = match
|
||||
#--- count bin classes with no mismatch ----------------------------------------------------------------------
|
||||
myMatch=0
|
||||
for i in xrange(nMicrostructures):
|
||||
for i in range(nMicrostructures):
|
||||
if currentError[i] > 0.0: break
|
||||
myMatch = i+1
|
||||
|
||||
if myNmicrostructures == nMicrostructures:
|
||||
for i in xrange(min(nMicrostructures,myMatch+options.bins)):
|
||||
for i in range(min(nMicrostructures,myMatch+options.bins)):
|
||||
if currentError[i] > target[i]['error']: # worse fitting, next try
|
||||
randReset = True
|
||||
break
|
||||
|
@ -146,7 +145,7 @@ class myThread (threading.Thread):
|
|||
for line in perturbedSeedsVFile:
|
||||
currentSeedsFile.write(line)
|
||||
bestSeedsVFile.write(line)
|
||||
for j in xrange(nMicrostructures): # save new errors for all bins
|
||||
for j in range(nMicrostructures): # save new errors for all bins
|
||||
target[j]['error'] = currentError[j]
|
||||
if myMatch > match: # one or more new bins have no deviation
|
||||
damask.util.croak( 'Stage {:d} cleared'.format(myMatch))
|
||||
|
@ -160,7 +159,7 @@ class myThread (threading.Thread):
|
|||
bestSeedsVFile = StringIO()
|
||||
for line in perturbedSeedsVFile:
|
||||
bestSeedsVFile.write(line)
|
||||
for j in xrange(nMicrostructures):
|
||||
for j in range(nMicrostructures):
|
||||
target[j]['error'] = currentError[j]
|
||||
randReset = True
|
||||
else: #--- not all grains are tessellated
|
||||
|
@ -219,8 +218,7 @@ if options.randomSeed is None:
|
|||
damask.util.croak(options.randomSeed)
|
||||
delta = (options.scale/options.grid[0],options.scale/options.grid[1],options.scale/options.grid[2])
|
||||
baseFile=os.path.splitext(os.path.basename(options.seedFile))[0]
|
||||
points = float(reduce(mul,options.grid))
|
||||
|
||||
points = np.array(options.grid).prod().astype('float')
|
||||
|
||||
# ----------- calculate target distribution and bin edges
|
||||
targetGeomFile = os.path.splitext(os.path.basename(options.target))[0]+'.geom'
|
||||
|
@ -231,7 +229,7 @@ nMicrostructures = info['microstructures']
|
|||
targetVolFrac = np.bincount(targetGeomTable.microstructure_read(info['grid']))[1:nMicrostructures+1]/\
|
||||
float(info['grid'].prod())
|
||||
target=[]
|
||||
for i in xrange(1,nMicrostructures+1):
|
||||
for i in range(1,nMicrostructures+1):
|
||||
targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries
|
||||
target.append({'histogram':targetHist,'bins':targetBins})
|
||||
|
||||
|
@ -260,7 +258,7 @@ info,devNull = initialGeomTable.head_getGeom()
|
|||
if info['microstructures'] != nMicrostructures: damask.util.croak('error. Microstructure count mismatch')
|
||||
|
||||
initialData = np.bincount(initialGeomTable.microstructure_read(info['grid']))/points
|
||||
for i in xrange(nMicrostructures):
|
||||
for i in range(nMicrostructures):
|
||||
initialHist = np.histogram(initialData,bins=target[i]['bins'])[0]
|
||||
target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum())
|
||||
|
||||
|
@ -269,7 +267,7 @@ if target[0]['error'] > 0.0:
|
|||
target[0]['error'] *=((target[0]['bins'][0]-np.min(initialData))**2.0+
|
||||
(target[0]['bins'][1]-np.max(initialData))**2.0)**0.5
|
||||
match=0
|
||||
for i in xrange(nMicrostructures):
|
||||
for i in range(nMicrostructures):
|
||||
if target[i]['error'] > 0.0: break
|
||||
match = i+1
|
||||
|
||||
|
|
|
@ -105,12 +105,12 @@ for name in filenames:
|
|||
grid = np.zeros(3,'i')
|
||||
|
||||
n = 0
|
||||
for i in xrange(Nx):
|
||||
for j in xrange(Ny):
|
||||
for i in range(Nx):
|
||||
for j in range(Ny):
|
||||
grid[0] = round((i+0.5)*box[0]*info['grid'][0]/Nx-0.5)+offset[0]
|
||||
grid[1] = round((j+0.5)*box[1]*info['grid'][1]/Ny-0.5)+offset[1]
|
||||
damask.util.croak('x,y coord on surface: {},{}...'.format(*grid[:2]))
|
||||
for k in xrange(Nz):
|
||||
for k in range(Nz):
|
||||
grid[2] = k + offset[2]
|
||||
grid %= info['grid']
|
||||
seeds[n,0:3] = (0.5+grid)/info['grid'] # normalize coordinates to box
|
||||
|
|
|
@ -14,12 +14,12 @@ scriptID = ' '.join([scriptName,damask.version])
|
|||
# ------------------------------------------ aux functions ---------------------------------
|
||||
|
||||
def kdtree_search(cloud, queryPoints):
|
||||
"""find distances to nearest neighbor among cloud (N,d) for each of the queryPoints (n,d)"""
|
||||
"""Find distances to nearest neighbor among cloud (N,d) for each of the queryPoints (n,d)"""
|
||||
n = queryPoints.shape[0]
|
||||
distances = np.zeros(n,dtype=float)
|
||||
tree = spatial.cKDTree(cloud)
|
||||
|
||||
for i in xrange(n):
|
||||
for i in range(n):
|
||||
distances[i], index = tree.query(queryPoints[i])
|
||||
|
||||
return distances
|
||||
|
@ -227,8 +227,8 @@ for name in filenames:
|
|||
"randomSeed\t{}".format(options.randomSeed),
|
||||
])
|
||||
table.labels_clear()
|
||||
table.labels_append( ['{dim}_{label}'.format(dim = 1+k,label = 'pos') for k in xrange(3)] +
|
||||
['{dim}_{label}'.format(dim = 1+k,label = 'euler') for k in xrange(3)] +
|
||||
table.labels_append( ['{dim}_{label}'.format(dim = 1+k,label = 'pos') for k in range(3)] +
|
||||
['{dim}_{label}'.format(dim = 1+k,label = 'euler') for k in range(3)] +
|
||||
['microstructure'] +
|
||||
(['weight'] if options.weights else []))
|
||||
table.head_write()
|
||||
|
|
Loading…
Reference in New Issue