fixed typo that prevented selection of "Moore" neighborhood.
made "boundary" and "biplane" synonyms. adopted more modern treatment of geom-files. introduced scale for voxel size (independent of physical size and resolution given in geom-file).
This commit is contained in:
parent
4da866b29b
commit
8a80f5ec7a
|
@ -51,12 +51,15 @@ def periodic_3Dpad(array, rimdim=(1,1,1)):
|
|||
#--------------------------------------------------------------------------------------------------
|
||||
# MAIN
|
||||
#--------------------------------------------------------------------------------------------------
|
||||
synonyms = {
|
||||
'grid': ['resolution'],
|
||||
'size': ['dimension'],
|
||||
}
|
||||
identifiers = {
|
||||
'grid': ['a','b','c'],
|
||||
'size': ['x','y','z'],
|
||||
'origin': ['x','y','z'],
|
||||
}
|
||||
|
||||
mappings = {
|
||||
'grid': lambda x: int(x),
|
||||
'size': lambda x: float(x),
|
||||
|
@ -66,9 +69,9 @@ mappings = {
|
|||
}
|
||||
|
||||
features = [
|
||||
{'aliens': 1, 'names': ['boundary(biplane)'],},
|
||||
{'aliens': 2, 'names': ['tripleline'],},
|
||||
{'aliens': 3, 'names': ['quadruplepoint'],}
|
||||
{'aliens': 1, 'names': ['boundary','biplane'],},
|
||||
{'aliens': 2, 'names': ['tripleline',],},
|
||||
{'aliens': 3, 'names': ['quadruplepoint',],}
|
||||
]
|
||||
|
||||
neighborhoods = {
|
||||
|
@ -90,6 +93,7 @@ neighborhoods = {
|
|||
[-1, 1,-1],
|
||||
[ 0, 1,-1],
|
||||
[ 1, 1,-1],
|
||||
#
|
||||
[-1,-1, 0],
|
||||
[ 0,-1, 0],
|
||||
[ 1,-1, 0],
|
||||
|
@ -99,6 +103,7 @@ neighborhoods = {
|
|||
[-1, 1, 0],
|
||||
[ 0, 1, 0],
|
||||
[ 1, 1, 0],
|
||||
#
|
||||
[-1,-1, 1],
|
||||
[ 0,-1, 1],
|
||||
[ 1,-1, 1],
|
||||
|
@ -117,16 +122,16 @@ boundaries, triple lines, and quadruple points.
|
|||
""" + string.replace(scriptID,'\n','\\n')
|
||||
)
|
||||
|
||||
parser.add_option('-t','--type', dest='type', action='extend', type='string', metavar = '<string LIST>', \
|
||||
help='feature type (%s) '%(', '.join(map(lambda x:', '.join(x['names']),features))) )
|
||||
parser.add_option('-n','--neighborhood', dest='neigborhood', choices=neighborhoods.keys(), metavar = 'string', \
|
||||
parser.add_option('-t','--type', dest = 'type', action = 'extend', type = 'string', metavar = '<string LIST>',
|
||||
help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) )
|
||||
parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string',
|
||||
help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys())))
|
||||
parser.add_option('-2', '--twodimensional', dest='twoD', action='store_true', \
|
||||
help='output geom file with two-dimensional data arrangement [%default]')
|
||||
parser.add_option('-s', '--scale', dest = 'scale', type = 'float',
|
||||
help = 'voxel size [%default]')
|
||||
|
||||
parser.set_defaults(type = [])
|
||||
parser.set_defaults(neighborhood = 'neumann')
|
||||
parser.set_defaults(twoD = False)
|
||||
parser.set_defaults(scale = 1.0)
|
||||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
|
@ -152,8 +157,7 @@ else:
|
|||
if os.path.exists(name):
|
||||
files.append({'name':name,
|
||||
'input':open(name),
|
||||
'output':[open(string.split(''.join((features[feature]['names'])),sep='(')[0]+'_'+name,'w')
|
||||
for feature in feature_list],
|
||||
'output':[open(features[feature]['names'][0]+'_'+name,'w') for feature in feature_list],
|
||||
'croak':sys.stdout,
|
||||
})
|
||||
|
||||
|
@ -162,35 +166,29 @@ for file in files:
|
|||
if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
||||
else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n')
|
||||
|
||||
firstline = file['input'].readline()
|
||||
m = re.search('(\d+)\s*head', firstline.lower())
|
||||
if m:
|
||||
headerlines = int(m.group(1))
|
||||
headers = [file['input'].readline() for i in range(headerlines)]
|
||||
else:
|
||||
headerlines = 1
|
||||
headers = firstline
|
||||
theTable = damask.ASCIItable(file['input'],file['output'][0],labels = False)
|
||||
theTable.head_read()
|
||||
|
||||
content = file['input'].readlines()
|
||||
file['input'].close()
|
||||
|
||||
#--- interprete header ----------------------------------------------------------------------------
|
||||
#--- interpret header ----------------------------------------------------------------------------
|
||||
info = {
|
||||
'grid': numpy.zeros(3,'i'),
|
||||
'size': numpy.zeros(3,'d'),
|
||||
'origin': numpy.zeros(3,'d'),
|
||||
'homogenization': 0,
|
||||
'microstructures': 0,
|
||||
'homogenization': 0
|
||||
}
|
||||
newInfo = {
|
||||
'grid': numpy.zeros(3,'i'),
|
||||
'origin': numpy.zeros(3,'d'),
|
||||
'microstructures': 0,
|
||||
}
|
||||
extra_header = []
|
||||
|
||||
new_header = []
|
||||
for header in headers:
|
||||
for header in theTable.info:
|
||||
headitems = map(str.lower,header.split())
|
||||
if headitems[0] == 'resolution': headitems[0] = 'grid'
|
||||
if headitems[0] == 'dimension': headitems[0] = 'size'
|
||||
if len(headitems) == 0: continue # skip blank lines
|
||||
for synonym,alternatives in synonyms.iteritems():
|
||||
if headitems[0] in alternatives: headitems[0] = synonym
|
||||
if headitems[0] in mappings.keys():
|
||||
if headitems[0] in identifiers.keys():
|
||||
for i in xrange(len(identifiers[headitems[0]])):
|
||||
|
@ -199,7 +197,7 @@ for file in files:
|
|||
else:
|
||||
info[headitems[0]] = mappings[headitems[0]](headitems[1])
|
||||
else:
|
||||
new_header.append(header)
|
||||
extra_header.append(header)
|
||||
|
||||
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
|
||||
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
|
||||
|
@ -209,30 +207,31 @@ for file in files:
|
|||
|
||||
if numpy.any(info['grid'] < 1):
|
||||
file['croak'].write('invalid grid a b c.\n')
|
||||
sys.exit()
|
||||
continue
|
||||
if numpy.any(info['size'] <= 0.0):
|
||||
file['croak'].write('invalid size x y z.\n')
|
||||
sys.exit()
|
||||
continue
|
||||
|
||||
new_header.append(scriptID + ' ' + ' '.join(sys.argv[1:]) + '\n')
|
||||
new_header.append("grid\ta %i\tb %i\tc %i\n"%(info['grid'][0],info['grid'][1],info['grid'][2],))
|
||||
new_header.append("size\tx %f\ty %f\tz %f\n"%(info['size'][0],info['size'][1],info['size'][2],))
|
||||
new_header.append("origin\tx %f\ty %f\tz %f\n"%(info['origin'][0],info['origin'][1],info['origin'][2],))
|
||||
new_header.append("homogenization\t%i\n"%info['homogenization'])
|
||||
|
||||
#--- process input --------------------------------------------------------------------------------
|
||||
structure = numpy.zeros(info['grid'],'i')
|
||||
#--- read data ------------------------------------------------------------------------------------
|
||||
microstructure = numpy.zeros(info['grid'].prod(),'i') # initialize as flat array
|
||||
i = 0
|
||||
for line in content:
|
||||
for item in map(int,line.split()):
|
||||
structure[i%info['grid'][0],
|
||||
(i/info['grid'][0])%info['grid'][1],
|
||||
i/info['grid'][0] /info['grid'][1]] = item
|
||||
i += 1
|
||||
|
||||
while theTable.data_read():
|
||||
items = theTable.data
|
||||
if len(items) > 2:
|
||||
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
|
||||
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
|
||||
else: items = map(int,items)
|
||||
else: items = map(int,items)
|
||||
|
||||
s = len(items)
|
||||
microstructure[i:i+s] = items
|
||||
i += s
|
||||
|
||||
|
||||
neighborhood = neighborhoods[options.neighborhood]
|
||||
convoluted = numpy.empty([len(neighborhood)]+list(info['grid']+2),'i')
|
||||
microstructure = periodic_3Dpad(structure)
|
||||
structure = periodic_3Dpad(microstructure.reshape(info['grid'],order='F'))
|
||||
|
||||
for i,p in enumerate(neighborhood):
|
||||
stencil = numpy.zeros((3,3,3),'i')
|
||||
|
@ -240,41 +239,47 @@ for file in files:
|
|||
stencil[p[0]+1,
|
||||
p[1]+1,
|
||||
p[2]+1] = 1
|
||||
|
||||
convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil)
|
||||
convoluted[i,:,:,:] = ndimage.convolve(structure,stencil)
|
||||
|
||||
distance = numpy.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d')
|
||||
|
||||
convoluted = numpy.sort(convoluted,axis = 0)
|
||||
uniques = numpy.zeros(info['grid'])
|
||||
check = numpy.empty(info['grid'])
|
||||
check[:,:,:] = numpy.nan
|
||||
for i in xrange(len(neighborhood)):
|
||||
uniques += numpy.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1)
|
||||
check = convoluted[i,1:-1,1:-1,1:-1]
|
||||
uniques = numpy.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0])
|
||||
|
||||
for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood
|
||||
uniques += numpy.where(numpy.logical_and(
|
||||
convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected?
|
||||
convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself?
|
||||
1,0) # count flip
|
||||
|
||||
for i,feature_id in enumerate(feature_list):
|
||||
distance[i,:,:,:] = numpy.where(uniques > features[feature_id]['aliens'],0.0,1.0)
|
||||
distance[i,:,:,:] = numpy.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present
|
||||
|
||||
for i in xrange(len(feature_list)):
|
||||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*\
|
||||
[max(info['size']/info['grid'])]*3
|
||||
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3
|
||||
|
||||
for i,feature in enumerate(feature_list):
|
||||
newInfo['microstructures'] = int(math.ceil(distance[i,:,:,:].max()))
|
||||
|
||||
#--- write header ---------------------------------------------------------------------------------
|
||||
theTable = damask.ASCIItable(file['input'],file['output'][i],labels = False)
|
||||
theTable.labels_clear()
|
||||
theTable.info_clear()
|
||||
theTable.info_append(extra_header+[
|
||||
scriptID + ' ' + ' '.join(sys.argv[1:]),
|
||||
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
|
||||
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
|
||||
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
|
||||
"homogenization\t%i"%info['homogenization'],
|
||||
"microstructures\t%i"%(newInfo['microstructures']),
|
||||
])
|
||||
theTable.head_write()
|
||||
theTable.output_flush()
|
||||
|
||||
# --- write microstructure information ------------------------------------------------------------
|
||||
formatwidth = int(math.floor(math.log10(distance[i,:,:,:].max())+1))
|
||||
|
||||
#--- assemble header and report changes -----------------------------------------------------------
|
||||
output = '%i\theader\n'%(len(new_header)+1)+''.join(new_header)
|
||||
output += "microstructures\t%i\n"%newInfo['microstructures']
|
||||
file['croak'].write('\n'+features[i]['names'][0]+'\n')
|
||||
if (newInfo['microstructures'] != info['microstructures']):
|
||||
file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures'])
|
||||
|
||||
#--- write new data -------------------------------------------------------------------------------
|
||||
for z in xrange(info['grid'][2]):
|
||||
for y in xrange(info['grid'][1]):
|
||||
output += {True:' ',False:'\n'}[options.twoD].join(map(lambda x: \
|
||||
('%%%ii'%formatwidth)%(round(x)), distance[i,:,y,z])) + '\n'
|
||||
file['output'][i].write(output)
|
||||
if file['name'] != 'STDIN':
|
||||
theTable.data = distance[i,:,:,:].reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
||||
theTable.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
|
||||
file['output'][i].close()
|
||||
|
||||
#--- output finalization --------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue