documentation was for a lot of things that are not in here

setting constants without truncation
This commit is contained in:
Martin Diehl 2019-02-01 08:52:38 +01:00
parent a260bd2d2b
commit 8a2689da0a
1 changed files with 46 additions and 42 deletions

View File

@ -1,5 +1,6 @@
! ###################################################################
! Copyright (c) 2013-2015, Marc De Graef/Carnegie Mellon University
! Modified 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
! All rights reserved.
!
! Redistribution and use in source and binary forms, with or without modification, are
@ -29,19 +30,8 @@
!--------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!
!> @brief everything that has to do with the modified Lambert projections
!> @brief Mapping homochoric <-> cubochoric
!
!> @details This module contains a number of projection functions for the modified
!> Lambert projection between square lattice and 2D hemisphere, hexagonal lattice
!> and 2D hemisphere, as well as the more complex mapping between a 3D cubic grid
!> and the unit quaternion hemisphere with positive scalar component. In addition, there
!> are some other projections, such as the stereographic one. Each function is named
!> by the projection, the dimensionality of the starting grid, and the forward or inverse
!> character. For each function, there is also a single precision and a double precision
!> version, but we use the interface formalism to have only a single call. The Forward
!> mapping is taken to be the one from the simple grid to the curved grid. Since the module
!> deals with various grids, we also add a few functions/subroutines that apply symmetry
!> operations on those grids.
!> References:
!> D. Rosca, A. Morawiec, and M. De Graef. A new method of constructing a grid
!> in the space of 3D rotations and its applications to texture analysis.
@ -49,24 +39,23 @@
!--------------------------------------------------------------------------
module Lambert
use math
use prec
use prec, only: &
pReal
implicit none
real(pReal), private :: &
sPi = sqrt(PI), &
pref = sqrt(6.0_pReal/PI), &
! the following constants are used for the cube to quaternion hemisphere mapping
ap = PI**(2.0_pReal/3.0_pReal), &
sc = 0.897772786961286_pReal, & ! a/ap
beta = 0.962874509979126_pReal, & ! pi^(5/6)/6^(1/6)/2
R1 = 1.330670039491469_pReal, & ! (3pi/4)^(1/3)
r2 = sqrt(2.0_pReal), &
pi12 = PI/12.0_pReal, &
prek = 1.643456402972504_pReal, & ! R1 2^(1/4)/beta
r24 = sqrt(24.0_pReal)
private
real(pReal), parameter, private :: &
SPI = sqrt(PI), &
PREF = sqrt(6.0_pReal/PI), &
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
AP = PI**(2.0_pReal/3.0_pReal), &
SC = A/AP, &
BETA = A/2.0_pReal, &
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
R2 = sqrt(2.0_pReal), &
PI12 = PI/12.0_pReal, &
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
public :: &
LambertCubeToBall, &
LambertBallToCube
@ -78,10 +67,14 @@ contains
!--------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief map from 3D cubic grid to 3D ball
!--------------------------------------------------------------------------
function LambertCubeToBall(cube) result(ball)
use, intrinsic :: IEEE_ARITHMETIC
use prec, only: &
pInt, &
dEq0
implicit none
real(pReal), intent(in), dimension(3) :: cube
@ -91,7 +84,7 @@ function LambertCubeToBall(cube) result(ball)
integer(pInt), dimension(3) :: p
integer(pInt), dimension(2) :: order
if (maxval(abs(cube)) > ap/2.0+eps) then
if (maxval(abs(cube)) > AP/2.0+eps) then
ball = IEEE_value(cube,IEEE_positive_inf)
return
end if
@ -109,17 +102,17 @@ function LambertCubeToBall(cube) result(ball)
LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ]
else special
order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ
q = pi12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
c = cos(q)
s = sin(q)
q = prek * XYZ(order(2))/ sqrt(r2-c)
T = [ (r2*c - 1.0), r2 * s] * q
q = prek * XYZ(order(2))/ sqrt(R2-c)
T = [ (R2*c - 1.0), R2 * s] * q
! transform to sphere grid (inverse Lambert)
! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
c = sum(T**2)
s = Pi * c/(24.0*XYZ(3)**2)
c = sPi * c / r24 / XYZ(3)
c = sPi * c / sqrt(24.0_pReal) / XYZ(3)
q = sqrt( 1.0 - s )
LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ]
endif special
@ -131,19 +124,26 @@ function LambertCubeToBall(cube) result(ball)
end function LambertCubeToBall
!--------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief map from 3D ball to 3D cubic grid
!--------------------------------------------------------------------------
pure function LambertBallToCube(xyz) result(cube)
use, intrinsic :: IEEE_ARITHMETIC
use, intrinsic :: IEEE_ARITHMETIC, only:&
IEEE_positive_inf, &
IEEE_value
use prec, only: &
pInt, &
dEq0
implicit none
real(pReal), intent(in), dimension(3) :: xyz
real(pReal), dimension(3) :: cube, xyz1, xyz3
real(pReal), dimension(2) :: Tinv, xyz2
real(pReal) :: rs, qxy, q2, sq2, q, tt
integer(pInt) , dimension(3) :: p
integer(pInt), dimension(3) :: p
rs = norm2(xyz)
if (rs > R1) then
@ -168,10 +168,10 @@ pure function LambertBallToCube(xyz) result(cube)
else special
q2 = qxy + maxval(abs(xyz2))**2
sq2 = sqrt(q2)
q = (beta/r2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/r2/qxy
Tinv = q * sign(1.0,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/pi12], &
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/pi12, 1.0_pReal], &
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
Tinv = q * sign(1.0,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
abs(xyz2(2)) <= abs(xyz2(1)))
endif special
@ -185,11 +185,15 @@ pure function LambertBallToCube(xyz) result(cube)
end function LambertBallToCube
!--------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief determine to which pyramid a point in a cubic grid belongs
!--------------------------------------------------------------------------
pure function GetPyramidOrder(xyz)
use prec, only: &
pInt
implicit none
real(pReal),intent(in),dimension(3) :: xyz