documentation was for a lot of things that are not in here
setting constants without truncation
This commit is contained in:
parent
a260bd2d2b
commit
8a2689da0a
|
@ -1,5 +1,6 @@
|
|||
! ###################################################################
|
||||
! Copyright (c) 2013-2015, Marc De Graef/Carnegie Mellon University
|
||||
! Modified 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
||||
! All rights reserved.
|
||||
!
|
||||
! Redistribution and use in source and binary forms, with or without modification, are
|
||||
|
@ -29,19 +30,8 @@
|
|||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!
|
||||
!> @brief everything that has to do with the modified Lambert projections
|
||||
!> @brief Mapping homochoric <-> cubochoric
|
||||
!
|
||||
!> @details This module contains a number of projection functions for the modified
|
||||
!> Lambert projection between square lattice and 2D hemisphere, hexagonal lattice
|
||||
!> and 2D hemisphere, as well as the more complex mapping between a 3D cubic grid
|
||||
!> and the unit quaternion hemisphere with positive scalar component. In addition, there
|
||||
!> are some other projections, such as the stereographic one. Each function is named
|
||||
!> by the projection, the dimensionality of the starting grid, and the forward or inverse
|
||||
!> character. For each function, there is also a single precision and a double precision
|
||||
!> version, but we use the interface formalism to have only a single call. The Forward
|
||||
!> mapping is taken to be the one from the simple grid to the curved grid. Since the module
|
||||
!> deals with various grids, we also add a few functions/subroutines that apply symmetry
|
||||
!> operations on those grids.
|
||||
!> References:
|
||||
!> D. Rosca, A. Morawiec, and M. De Graef. “A new method of constructing a grid
|
||||
!> in the space of 3D rotations and its applications to texture analysis”.
|
||||
|
@ -49,24 +39,23 @@
|
|||
!--------------------------------------------------------------------------
|
||||
module Lambert
|
||||
use math
|
||||
use prec
|
||||
use prec, only: &
|
||||
pReal
|
||||
|
||||
implicit none
|
||||
|
||||
real(pReal), private :: &
|
||||
sPi = sqrt(PI), &
|
||||
pref = sqrt(6.0_pReal/PI), &
|
||||
! the following constants are used for the cube to quaternion hemisphere mapping
|
||||
ap = PI**(2.0_pReal/3.0_pReal), &
|
||||
sc = 0.897772786961286_pReal, & ! a/ap
|
||||
beta = 0.962874509979126_pReal, & ! pi^(5/6)/6^(1/6)/2
|
||||
R1 = 1.330670039491469_pReal, & ! (3pi/4)^(1/3)
|
||||
r2 = sqrt(2.0_pReal), &
|
||||
pi12 = PI/12.0_pReal, &
|
||||
prek = 1.643456402972504_pReal, & ! R1 2^(1/4)/beta
|
||||
r24 = sqrt(24.0_pReal)
|
||||
|
||||
private
|
||||
real(pReal), parameter, private :: &
|
||||
SPI = sqrt(PI), &
|
||||
PREF = sqrt(6.0_pReal/PI), &
|
||||
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
|
||||
AP = PI**(2.0_pReal/3.0_pReal), &
|
||||
SC = A/AP, &
|
||||
BETA = A/2.0_pReal, &
|
||||
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
|
||||
R2 = sqrt(2.0_pReal), &
|
||||
PI12 = PI/12.0_pReal, &
|
||||
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
|
||||
|
||||
public :: &
|
||||
LambertCubeToBall, &
|
||||
LambertBallToCube
|
||||
|
@ -78,20 +67,24 @@ contains
|
|||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief map from 3D cubic grid to 3D ball
|
||||
!--------------------------------------------------------------------------
|
||||
function LambertCubeToBall(cube) result(ball)
|
||||
use, intrinsic :: IEEE_ARITHMETIC
|
||||
use prec, only: &
|
||||
pInt, &
|
||||
dEq0
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in), dimension(3) :: cube
|
||||
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
|
||||
real(pReal) :: T(2), c, s, q
|
||||
real(pReal), parameter :: eps = 1.0e-8_pReal
|
||||
real(pReal) :: T(2), c, s, q
|
||||
real(pReal), parameter :: eps = 1.0e-8_pReal
|
||||
integer(pInt), dimension(3) :: p
|
||||
integer(pInt), dimension(2) :: order
|
||||
|
||||
if (maxval(abs(cube)) > ap/2.0+eps) then
|
||||
if (maxval(abs(cube)) > AP/2.0+eps) then
|
||||
ball = IEEE_value(cube,IEEE_positive_inf)
|
||||
return
|
||||
end if
|
||||
|
@ -109,17 +102,17 @@ function LambertCubeToBall(cube) result(ball)
|
|||
LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ]
|
||||
else special
|
||||
order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ
|
||||
q = pi12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
|
||||
q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
|
||||
c = cos(q)
|
||||
s = sin(q)
|
||||
q = prek * XYZ(order(2))/ sqrt(r2-c)
|
||||
T = [ (r2*c - 1.0), r2 * s] * q
|
||||
q = prek * XYZ(order(2))/ sqrt(R2-c)
|
||||
T = [ (R2*c - 1.0), R2 * s] * q
|
||||
|
||||
! transform to sphere grid (inverse Lambert)
|
||||
! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
|
||||
c = sum(T**2)
|
||||
s = Pi * c/(24.0*XYZ(3)**2)
|
||||
c = sPi * c / r24 / XYZ(3)
|
||||
c = sPi * c / sqrt(24.0_pReal) / XYZ(3)
|
||||
q = sqrt( 1.0 - s )
|
||||
LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ]
|
||||
endif special
|
||||
|
@ -131,19 +124,26 @@ function LambertCubeToBall(cube) result(ball)
|
|||
|
||||
end function LambertCubeToBall
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief map from 3D ball to 3D cubic grid
|
||||
!--------------------------------------------------------------------------
|
||||
pure function LambertBallToCube(xyz) result(cube)
|
||||
use, intrinsic :: IEEE_ARITHMETIC
|
||||
use, intrinsic :: IEEE_ARITHMETIC, only:&
|
||||
IEEE_positive_inf, &
|
||||
IEEE_value
|
||||
use prec, only: &
|
||||
pInt, &
|
||||
dEq0
|
||||
|
||||
implicit none
|
||||
real(pReal), intent(in), dimension(3) :: xyz
|
||||
real(pReal), dimension(3) :: cube, xyz1, xyz3
|
||||
real(pReal), dimension(2) :: Tinv, xyz2
|
||||
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
||||
integer(pInt) , dimension(3) :: p
|
||||
integer(pInt), dimension(3) :: p
|
||||
|
||||
rs = norm2(xyz)
|
||||
if (rs > R1) then
|
||||
|
@ -168,10 +168,10 @@ pure function LambertBallToCube(xyz) result(cube)
|
|||
else special
|
||||
q2 = qxy + maxval(abs(xyz2))**2
|
||||
sq2 = sqrt(q2)
|
||||
q = (beta/r2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
||||
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/r2/qxy
|
||||
Tinv = q * sign(1.0,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/pi12], &
|
||||
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/pi12, 1.0_pReal], &
|
||||
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
||||
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
||||
Tinv = q * sign(1.0,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
||||
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
||||
abs(xyz2(2)) <= abs(xyz2(1)))
|
||||
endif special
|
||||
|
||||
|
@ -185,15 +185,19 @@ pure function LambertBallToCube(xyz) result(cube)
|
|||
|
||||
end function LambertBallToCube
|
||||
|
||||
|
||||
!--------------------------------------------------------------------------
|
||||
!> @author Marc De Graef, Carnegie Mellon University
|
||||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||||
!> @brief determine to which pyramid a point in a cubic grid belongs
|
||||
!--------------------------------------------------------------------------
|
||||
pure function GetPyramidOrder(xyz)
|
||||
use prec, only: &
|
||||
pInt
|
||||
|
||||
implicit none
|
||||
real(pReal),intent(in),dimension(3) :: xyz
|
||||
integer(pInt), dimension(3) :: GetPyramidOrder
|
||||
integer(pInt), dimension(3) :: GetPyramidOrder
|
||||
|
||||
if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. &
|
||||
((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then
|
||||
|
@ -205,7 +209,7 @@ pure function GetPyramidOrder(xyz)
|
|||
((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then
|
||||
GetPyramidOrder = [3,1,2]
|
||||
else
|
||||
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
|
||||
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
|
||||
end if
|
||||
|
||||
end function GetPyramidOrder
|
||||
|
|
Loading…
Reference in New Issue