more flexible and user friendly

This commit is contained in:
Martin Diehl 2019-02-11 10:08:34 +01:00
parent af28e9cdd9
commit 87f3e3f621
1 changed files with 47 additions and 32 deletions

View File

@ -119,7 +119,7 @@ module math
public :: &
#if defined(__PGI)
norm2, &
norm2, &
#endif
math_init, &
math_qsort, &
@ -354,20 +354,38 @@ end subroutine math_check
!--------------------------------------------------------------------------------------------------
!> @brief Quicksort algorithm for two-dimensional integer arrays
! Sorting is done with respect to array(1,:)
! and keeps array(2:N,:) linked to it.
! Sorting is done with respect to array(sort,:) and keeps array(/=sort,:) linked to it.
! default: sort=1
!--------------------------------------------------------------------------------------------------
recursive subroutine math_qsort(a, istart, iend)
recursive subroutine math_qsort(a, istart, iend, sortDim)
implicit none
integer(pInt), dimension(:,:), intent(inout) :: a
integer(pInt), intent(in) :: istart,iend
integer(pInt) :: ipivot
integer(pInt), intent(in),optional :: istart,iend, sortDim
integer(pInt) :: ipivot,s,e,d
if (istart < iend) then
ipivot = qsort_partition(a,istart, iend)
call math_qsort(a, istart, ipivot-1_pInt)
call math_qsort(a, ipivot+1_pInt, iend)
if(present(istart)) then
s = istart
else
s = lbound(a,2)
endif
if(present(iend)) then
e = iend
else
e = ubound(a,2)
endif
if(present(sortDim)) then
d = sortDim
else
d = 1
endif
if (s < e) then
ipivot = qsort_partition(a,s, e, d)
call math_qsort(a, s, ipivot-1_pInt, d)
call math_qsort(a, ipivot+1_pInt, e, d)
endif
!--------------------------------------------------------------------------------------------------
@ -376,37 +394,34 @@ recursive subroutine math_qsort(a, istart, iend)
!-------------------------------------------------------------------------------------------------
!> @brief Partitioning required for quicksort
!-------------------------------------------------------------------------------------------------
integer(pInt) function qsort_partition(a, istart, iend)
integer(pInt) function qsort_partition(a, istart, iend, sort)
implicit none
integer(pInt), dimension(:,:), intent(inout) :: a
integer(pInt), intent(in) :: istart,iend
integer(pInt) :: i,j,k,tmp
integer(pInt), intent(in) :: istart,iend,sort
integer(pInt), dimension(size(a,1)) :: tmp
integer(pInt) :: i,j
do
! find the first element on the right side less than or equal to the pivot point
! find the first element on the right side less than or equal to the pivot point
do j = iend, istart, -1_pInt
if (a(1,j) <= a(1,istart)) exit
if (a(sort,j) <= a(sort,istart)) exit
enddo
! find the first element on the left side greater than the pivot point
! find the first element on the left side greater than the pivot point
do i = istart, iend
if (a(1,i) > a(1,istart)) exit
if (a(sort,i) > a(sort,istart)) exit
enddo
if (i < j) then ! if the indexes do not cross, exchange values
do k = 1_pInt, int(size(a,1_pInt), pInt)
tmp = a(k,i)
a(k,i) = a(k,j)
a(k,j) = tmp
enddo
else ! if they do cross, exchange left value with pivot and return with the partition index
do k = 1_pInt, int(size(a,1_pInt), pInt)
tmp = a(k,istart)
a(k,istart) = a(k,j)
a(k,j) = tmp
enddo
cross: if (i >= j) then ! if the indices cross, exchange left value with pivot and return with the partition index
tmp = a(:,istart)
a(:,istart) = a(:,j)
a(:,j) = tmp
qsort_partition = j
return
endif
else cross ! if they do not cross, exchange values
tmp = a(:,i)
a(:,i) = a(:,j)
a(:,j) = tmp
endif cross
enddo
end function qsort_partition
@ -2713,7 +2728,7 @@ end function math_clip
#if defined(__PGI)
!--------------------------------------------------------------------------------------------------
!> @brief substitute for the norm2 intrinsic which is not available when using PGI 18.10
!> @brief substitute for the norm2 intrinsic which is not available in PGI 18.10
!--------------------------------------------------------------------------------------------------
real(pReal) pure function norm2(v)