sorting
most functions require only lattice family, functions that require full lattice details are at the end
This commit is contained in:
parent
302da1f76a
commit
87e94b6cf4
|
@ -132,7 +132,7 @@ class Orientation(Rotation):
|
||||||
"""
|
"""
|
||||||
super().__init__(rotation)
|
super().__init__(rotation)
|
||||||
|
|
||||||
if family in set(lattice_symmetries.values()) and lattice is None:
|
if family in set(lattice_symmetries.values()) and lattice is None:
|
||||||
self.family = family
|
self.family = family
|
||||||
self.lattice = None
|
self.lattice = None
|
||||||
|
|
||||||
|
@ -178,6 +178,11 @@ class Orientation(Rotation):
|
||||||
+ ([f'Crystal family {self.family}'])
|
+ ([f'Crystal family {self.family}'])
|
||||||
+ [super().__repr__()])
|
+ [super().__repr__()])
|
||||||
|
|
||||||
|
@property
|
||||||
|
def parameters(self):
|
||||||
|
"""Return lattice parameters a, b, c, alpha, beta, gamma."""
|
||||||
|
return (self.a,self.b,self.c,self.alpha,self.beta,self.gamma)
|
||||||
|
|
||||||
|
|
||||||
def __copy__(self,**kwargs):
|
def __copy__(self,**kwargs):
|
||||||
"""Create deep copy."""
|
"""Create deep copy."""
|
||||||
|
@ -533,193 +538,6 @@ class Orientation(Rotation):
|
||||||
return np.ones_like(rho[...,0],dtype=bool)
|
return np.ones_like(rho[...,0],dtype=bool)
|
||||||
|
|
||||||
|
|
||||||
def relation_operations(self,model,return_lattice=False):
|
|
||||||
"""
|
|
||||||
Crystallographic orientation relationships for phase transformations.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
model : str
|
|
||||||
Name of orientation relationship.
|
|
||||||
return_lattice : bool, optional
|
|
||||||
Return the target lattice in addition.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
operations : Rotations
|
|
||||||
Rotations characterizing the orientation relationship.
|
|
||||||
|
|
||||||
References
|
|
||||||
----------
|
|
||||||
S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
|
||||||
https://doi.org/10.1016/j.jallcom.2012.02.004
|
|
||||||
|
|
||||||
K. Kitahara et al., Acta Materialia 54(5):1279-1288, 2006
|
|
||||||
https://doi.org/10.1016/j.actamat.2005.11.001
|
|
||||||
|
|
||||||
Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
|
||||||
https://doi.org/10.1107/S0021889805038276
|
|
||||||
|
|
||||||
H. Kitahara et al., Materials Characterization 54(4-5):378-386, 2005
|
|
||||||
https://doi.org/10.1016/j.matchar.2004.12.015
|
|
||||||
|
|
||||||
Y. He et al., Acta Materialia 53(4):1179-1190, 2005
|
|
||||||
https://doi.org/10.1016/j.actamat.2004.11.021
|
|
||||||
|
|
||||||
"""
|
|
||||||
if model not in self.orientation_relationships:
|
|
||||||
raise KeyError(f'unknown orientation relationship "{model}"')
|
|
||||||
r = self.orientation_relationships[model]
|
|
||||||
|
|
||||||
sl = self.lattice
|
|
||||||
ol = (set(r)-{sl}).pop()
|
|
||||||
m = r[sl]
|
|
||||||
o = r[ol]
|
|
||||||
|
|
||||||
p_,_p = np.zeros(m.shape[:-1]+(3,)),np.zeros(o.shape[:-1]+(3,))
|
|
||||||
p_[...,0,:] = m[...,0,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=m[...,0,0:4])
|
|
||||||
p_[...,1,:] = m[...,1,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(hkil=m[...,1,0:4])
|
|
||||||
_p[...,0,:] = o[...,0,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=o[...,0,0:4])
|
|
||||||
_p[...,1,:] = o[...,1,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(hkil=o[...,1,0:4])
|
|
||||||
|
|
||||||
return (Rotation.from_parallel(p_,_p),ol) \
|
|
||||||
if return_lattice else \
|
|
||||||
Rotation.from_parallel(p_,_p)
|
|
||||||
|
|
||||||
|
|
||||||
def related(self,model):
|
|
||||||
"""
|
|
||||||
Orientations derived from the given relationship.
|
|
||||||
|
|
||||||
One dimension (length according to number of related orientations)
|
|
||||||
is added to the left of the Rotation array.
|
|
||||||
|
|
||||||
"""
|
|
||||||
o,lattice = self.relation_operations(model,return_lattice=True)
|
|
||||||
target = Orientation(lattice=lattice)
|
|
||||||
o = o.broadcast_to(o.shape+self.shape,mode='right')
|
|
||||||
return self.copy(rotation=o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'),
|
|
||||||
lattice=lattice,
|
|
||||||
b = self.b if target.ratio['b'] is None else self.a*target.ratio['b'],
|
|
||||||
c = self.c if target.ratio['c'] is None else self.a*target.ratio['c'],
|
|
||||||
alpha = None if 'alpha' in target.immutable else self.alpha,
|
|
||||||
beta = None if 'beta' in target.immutable else self.beta,
|
|
||||||
gamma = None if 'gamma' in target.immutable else self.gamma,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@property
|
|
||||||
def parameters(self):
|
|
||||||
"""Return lattice parameters a, b, c, alpha, beta, gamma."""
|
|
||||||
return (self.a,self.b,self.c,self.alpha,self.beta,self.gamma)
|
|
||||||
|
|
||||||
|
|
||||||
def in_SST(self,vector,proper=False):
|
|
||||||
"""
|
|
||||||
Check whether given crystal frame vector falls into standard stereographic triangle of own symmetry.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
vector : numpy.ndarray of shape (...,3)
|
|
||||||
Vector to check.
|
|
||||||
proper : bool, optional
|
|
||||||
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
|
|
||||||
Defaults to False.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
in : numpy.ndarray of shape (...)
|
|
||||||
Boolean array indicating whether vector falls into SST.
|
|
||||||
|
|
||||||
"""
|
|
||||||
if not isinstance(vector,np.ndarray) or vector.shape[-1] != 3:
|
|
||||||
raise ValueError('input is not a field of three-dimensional vectors')
|
|
||||||
|
|
||||||
if self.basis is None: # direct exit for no symmetry
|
|
||||||
return np.ones_like(vector[...,0],bool)
|
|
||||||
|
|
||||||
if proper:
|
|
||||||
components_proper = np.around(np.einsum('...ji,...i',
|
|
||||||
np.broadcast_to(self.basis['proper'], vector.shape+(3,)),
|
|
||||||
vector), 12)
|
|
||||||
components_improper = np.around(np.einsum('...ji,...i',
|
|
||||||
np.broadcast_to(self.basis['improper'], vector.shape+(3,)),
|
|
||||||
vector), 12)
|
|
||||||
return np.all(components_proper >= 0.0,axis=-1) \
|
|
||||||
| np.all(components_improper >= 0.0,axis=-1)
|
|
||||||
else:
|
|
||||||
components = np.around(np.einsum('...ji,...i',
|
|
||||||
np.broadcast_to(self.basis['improper'], vector.shape+(3,)),
|
|
||||||
np.block([vector[...,:2],np.abs(vector[...,2:3])])), 12)
|
|
||||||
|
|
||||||
return np.all(components >= 0.0,axis=-1)
|
|
||||||
|
|
||||||
|
|
||||||
def IPF_color(self,vector,in_SST=True,proper=False):
|
|
||||||
"""
|
|
||||||
Map vector to RGB color within standard stereographic triangle of own symmetry.
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
vector : numpy.ndarray of shape (...,3)
|
|
||||||
Vector to colorize.
|
|
||||||
in_SST : bool, optional
|
|
||||||
Consider symmetrically equivalent orientations such that poles are located in SST.
|
|
||||||
Defaults to True.
|
|
||||||
proper : bool, optional
|
|
||||||
Consider only vectors with z >= 0, hence combine two neighboring SSTs (with mirrored colors).
|
|
||||||
Defaults to False.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
rgb : numpy.ndarray of shape (...,3)
|
|
||||||
RGB array of IPF colors.
|
|
||||||
|
|
||||||
Examples
|
|
||||||
--------
|
|
||||||
Inverse pole figure color of the e_3 direction for a crystal in "Cube" orientation with cubic symmetry:
|
|
||||||
|
|
||||||
>>> o = damask.Orientation(lattice='cubic')
|
|
||||||
>>> o.IPF_color([0,0,1])
|
|
||||||
array([1., 0., 0.])
|
|
||||||
|
|
||||||
"""
|
|
||||||
if np.array(vector).shape[-1] != 3:
|
|
||||||
raise ValueError('input is not a field of three-dimensional vectors')
|
|
||||||
|
|
||||||
vector_ = self.to_SST(vector,proper) if in_SST else \
|
|
||||||
self @ np.broadcast_to(vector,self.shape+(3,))
|
|
||||||
|
|
||||||
if self.basis is None: # direct exit for no symmetry
|
|
||||||
return np.zeros_like(vector_)
|
|
||||||
|
|
||||||
if proper:
|
|
||||||
components_proper = np.around(np.einsum('...ji,...i',
|
|
||||||
np.broadcast_to(self.basis['proper'], vector_.shape+(3,)),
|
|
||||||
vector_), 12)
|
|
||||||
components_improper = np.around(np.einsum('...ji,...i',
|
|
||||||
np.broadcast_to(self.basis['improper'], vector_.shape+(3,)),
|
|
||||||
vector_), 12)
|
|
||||||
in_SST = np.all(components_proper >= 0.0,axis=-1) \
|
|
||||||
| np.all(components_improper >= 0.0,axis=-1)
|
|
||||||
components = np.where((in_SST & np.all(components_proper >= 0.0,axis=-1))[...,np.newaxis],
|
|
||||||
components_proper,components_improper)
|
|
||||||
else:
|
|
||||||
components = np.around(np.einsum('...ji,...i',
|
|
||||||
np.broadcast_to(self.basis['improper'], vector_.shape+(3,)),
|
|
||||||
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
|
|
||||||
|
|
||||||
in_SST = np.all(components >= 0.0,axis=-1)
|
|
||||||
|
|
||||||
with np.errstate(invalid='ignore',divide='ignore'):
|
|
||||||
rgb = (components/np.linalg.norm(components,axis=-1,keepdims=True))**0.5 # smoothen color ramps
|
|
||||||
rgb = np.clip(rgb,0.,1.) # clip intensity
|
|
||||||
rgb /= np.max(rgb,axis=-1,keepdims=True) # normalize to (HS)V = 1
|
|
||||||
rgb[np.broadcast_to(~in_SST[...,np.newaxis],rgb.shape)] = 0.0
|
|
||||||
|
|
||||||
return rgb
|
|
||||||
|
|
||||||
|
|
||||||
def disorientation(self,other,return_operators=False):
|
def disorientation(self,other,return_operators=False):
|
||||||
"""
|
"""
|
||||||
Calculate disorientation between myself and given other orientation.
|
Calculate disorientation between myself and given other orientation.
|
||||||
|
@ -874,6 +692,114 @@ class Orientation(Rotation):
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def in_SST(self,vector,proper=False):
|
||||||
|
"""
|
||||||
|
Check whether given crystal frame vector falls into standard stereographic triangle of own symmetry.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
vector : numpy.ndarray of shape (...,3)
|
||||||
|
Vector to check.
|
||||||
|
proper : bool, optional
|
||||||
|
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
|
||||||
|
Defaults to False.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
in : numpy.ndarray of shape (...)
|
||||||
|
Boolean array indicating whether vector falls into SST.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if not isinstance(vector,np.ndarray) or vector.shape[-1] != 3:
|
||||||
|
raise ValueError('input is not a field of three-dimensional vectors')
|
||||||
|
|
||||||
|
if self.basis is None: # direct exit for no symmetry
|
||||||
|
return np.ones_like(vector[...,0],bool)
|
||||||
|
|
||||||
|
if proper:
|
||||||
|
components_proper = np.around(np.einsum('...ji,...i',
|
||||||
|
np.broadcast_to(self.basis['proper'], vector.shape+(3,)),
|
||||||
|
vector), 12)
|
||||||
|
components_improper = np.around(np.einsum('...ji,...i',
|
||||||
|
np.broadcast_to(self.basis['improper'], vector.shape+(3,)),
|
||||||
|
vector), 12)
|
||||||
|
return np.all(components_proper >= 0.0,axis=-1) \
|
||||||
|
| np.all(components_improper >= 0.0,axis=-1)
|
||||||
|
else:
|
||||||
|
components = np.around(np.einsum('...ji,...i',
|
||||||
|
np.broadcast_to(self.basis['improper'], vector.shape+(3,)),
|
||||||
|
np.block([vector[...,:2],np.abs(vector[...,2:3])])), 12)
|
||||||
|
|
||||||
|
return np.all(components >= 0.0,axis=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def IPF_color(self,vector,in_SST=True,proper=False):
|
||||||
|
"""
|
||||||
|
Map vector to RGB color within standard stereographic triangle of own symmetry.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
vector : numpy.ndarray of shape (...,3)
|
||||||
|
Vector to colorize.
|
||||||
|
in_SST : bool, optional
|
||||||
|
Consider symmetrically equivalent orientations such that poles are located in SST.
|
||||||
|
Defaults to True.
|
||||||
|
proper : bool, optional
|
||||||
|
Consider only vectors with z >= 0, hence combine two neighboring SSTs (with mirrored colors).
|
||||||
|
Defaults to False.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
rgb : numpy.ndarray of shape (...,3)
|
||||||
|
RGB array of IPF colors.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
Inverse pole figure color of the e_3 direction for a crystal in "Cube" orientation with cubic symmetry:
|
||||||
|
|
||||||
|
>>> o = damask.Orientation(lattice='cubic')
|
||||||
|
>>> o.IPF_color([0,0,1])
|
||||||
|
array([1., 0., 0.])
|
||||||
|
|
||||||
|
"""
|
||||||
|
if np.array(vector).shape[-1] != 3:
|
||||||
|
raise ValueError('input is not a field of three-dimensional vectors')
|
||||||
|
|
||||||
|
vector_ = self.to_SST(vector,proper) if in_SST else \
|
||||||
|
self @ np.broadcast_to(vector,self.shape+(3,))
|
||||||
|
|
||||||
|
if self.basis is None: # direct exit for no symmetry
|
||||||
|
return np.zeros_like(vector_)
|
||||||
|
|
||||||
|
if proper:
|
||||||
|
components_proper = np.around(np.einsum('...ji,...i',
|
||||||
|
np.broadcast_to(self.basis['proper'], vector_.shape+(3,)),
|
||||||
|
vector_), 12)
|
||||||
|
components_improper = np.around(np.einsum('...ji,...i',
|
||||||
|
np.broadcast_to(self.basis['improper'], vector_.shape+(3,)),
|
||||||
|
vector_), 12)
|
||||||
|
in_SST = np.all(components_proper >= 0.0,axis=-1) \
|
||||||
|
| np.all(components_improper >= 0.0,axis=-1)
|
||||||
|
components = np.where((in_SST & np.all(components_proper >= 0.0,axis=-1))[...,np.newaxis],
|
||||||
|
components_proper,components_improper)
|
||||||
|
else:
|
||||||
|
components = np.around(np.einsum('...ji,...i',
|
||||||
|
np.broadcast_to(self.basis['improper'], vector_.shape+(3,)),
|
||||||
|
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
|
||||||
|
|
||||||
|
in_SST = np.all(components >= 0.0,axis=-1)
|
||||||
|
|
||||||
|
with np.errstate(invalid='ignore',divide='ignore'):
|
||||||
|
rgb = (components/np.linalg.norm(components,axis=-1,keepdims=True))**0.5 # smoothen color ramps
|
||||||
|
rgb = np.clip(rgb,0.,1.) # clip intensity
|
||||||
|
rgb /= np.max(rgb,axis=-1,keepdims=True) # normalize to (HS)V = 1
|
||||||
|
rgb[np.broadcast_to(~in_SST[...,np.newaxis],rgb.shape)] = 0.0
|
||||||
|
|
||||||
|
return rgb
|
||||||
|
|
||||||
|
|
||||||
|
# functions that require lattice, not just family
|
||||||
|
|
||||||
def to_pole(self,*,uvw=None,hkl=None,with_symmetry=False):
|
def to_pole(self,*,uvw=None,hkl=None,with_symmetry=False):
|
||||||
"""
|
"""
|
||||||
Calculate lab frame vector along lattice direction [uvw] or plane normal (hkl).
|
Calculate lab frame vector along lattice direction [uvw] or plane normal (hkl).
|
||||||
|
@ -938,3 +864,78 @@ class Orientation(Rotation):
|
||||||
|
|
||||||
return ~self.broadcast_to( self.shape+P.shape[:-2],mode='right') \
|
return ~self.broadcast_to( self.shape+P.shape[:-2],mode='right') \
|
||||||
@ np.broadcast_to(P,self.shape+P.shape)
|
@ np.broadcast_to(P,self.shape+P.shape)
|
||||||
|
|
||||||
|
|
||||||
|
def relation_operations(self,model,return_lattice=False):
|
||||||
|
"""
|
||||||
|
Crystallographic orientation relationships for phase transformations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
model : str
|
||||||
|
Name of orientation relationship.
|
||||||
|
return_lattice : bool, optional
|
||||||
|
Return the target lattice in addition.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
operations : Rotations
|
||||||
|
Rotations characterizing the orientation relationship.
|
||||||
|
|
||||||
|
References
|
||||||
|
----------
|
||||||
|
S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
||||||
|
https://doi.org/10.1016/j.jallcom.2012.02.004
|
||||||
|
|
||||||
|
K. Kitahara et al., Acta Materialia 54(5):1279-1288, 2006
|
||||||
|
https://doi.org/10.1016/j.actamat.2005.11.001
|
||||||
|
|
||||||
|
Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
||||||
|
https://doi.org/10.1107/S0021889805038276
|
||||||
|
|
||||||
|
H. Kitahara et al., Materials Characterization 54(4-5):378-386, 2005
|
||||||
|
https://doi.org/10.1016/j.matchar.2004.12.015
|
||||||
|
|
||||||
|
Y. He et al., Acta Materialia 53(4):1179-1190, 2005
|
||||||
|
https://doi.org/10.1016/j.actamat.2004.11.021
|
||||||
|
|
||||||
|
"""
|
||||||
|
if model not in self.orientation_relationships:
|
||||||
|
raise KeyError(f'unknown orientation relationship "{model}"')
|
||||||
|
r = self.orientation_relationships[model]
|
||||||
|
|
||||||
|
sl = self.lattice
|
||||||
|
ol = (set(r)-{sl}).pop()
|
||||||
|
m = r[sl]
|
||||||
|
o = r[ol]
|
||||||
|
|
||||||
|
p_,_p = np.zeros(m.shape[:-1]+(3,)),np.zeros(o.shape[:-1]+(3,))
|
||||||
|
p_[...,0,:] = m[...,0,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=m[...,0,0:4])
|
||||||
|
p_[...,1,:] = m[...,1,:] if m.shape[-1] == 3 else util.Bravais_to_Miller(hkil=m[...,1,0:4])
|
||||||
|
_p[...,0,:] = o[...,0,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(uvtw=o[...,0,0:4])
|
||||||
|
_p[...,1,:] = o[...,1,:] if o.shape[-1] == 3 else util.Bravais_to_Miller(hkil=o[...,1,0:4])
|
||||||
|
|
||||||
|
return (Rotation.from_parallel(p_,_p),ol) \
|
||||||
|
if return_lattice else \
|
||||||
|
Rotation.from_parallel(p_,_p)
|
||||||
|
|
||||||
|
|
||||||
|
def related(self,model):
|
||||||
|
"""
|
||||||
|
Orientations derived from the given relationship.
|
||||||
|
|
||||||
|
One dimension (length according to number of related orientations)
|
||||||
|
is added to the left of the Rotation array.
|
||||||
|
|
||||||
|
"""
|
||||||
|
o,lattice = self.relation_operations(model,return_lattice=True)
|
||||||
|
target = Orientation(lattice=lattice)
|
||||||
|
o = o.broadcast_to(o.shape+self.shape,mode='right')
|
||||||
|
return self.copy(rotation=o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'),
|
||||||
|
lattice=lattice,
|
||||||
|
b = self.b if target.ratio['b'] is None else self.a*target.ratio['b'],
|
||||||
|
c = self.c if target.ratio['c'] is None else self.a*target.ratio['c'],
|
||||||
|
alpha = None if 'alpha' in target.immutable else self.alpha,
|
||||||
|
beta = None if 'beta' in target.immutable else self.beta,
|
||||||
|
gamma = None if 'gamma' in target.immutable else self.gamma,
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue